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Abstract -- A new method of multiplication, where the multiplicand 
M and product P are not specified, only multiplier m is specified, 
is presented. It evaluates M and P such that the two strings of 
digits in M are interchanged in P. The process of multiplication 
is explained with examples and represented pictorially as a closed 
loop. Maximum possible numbers of such numbers with the same 
number of digits in M and P is 9. However, if M has number of 
zeros at the end digits, then R will have one additional digit. These 
sets may consist of the same or different numbers. Properties of 
such a closed loop are summarized. Some very interesting numbers 
are generated.
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I. INTRODUCTION
THE conventional method of multiplication is very simple. 
It is being taught in primary schools. When a multiplicand 
M is multiplied by a multiplier m, the result is the product P. 
Mathematically, expressed as 

M × m=P.	 (1)

Let an n-digit number M be expressed as

M=dn dn-1….d3 d2 d1=[X][Y]	 (2)

where [X] and [Y] are two strings of digits of M. 
Our aim is to get P, when M is multiplied by m,

P =M×m = [Y][X],	 (3)

i.e., the [X] and [Y] interchange their positions. 

Only m is specified and we have to find M such that Equation 
(3) is satisfied. We achieve this using a different type of 
multiplication presented next.

II. UNCONVENTIONAL METHOD OF 
MULTIPLICATION

Method: The method of multiplication is explained with 
examples.

Example 1: Let m = 3. To start with, let us take Y as a single 
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digit number 1, and X = n-1 digit number. Then 

M=dn dn-1….d3 d2 1.	 (4)

It is required that 

P= 1dn dn-1….d3 d2.

Other digits of M are obtained as explained in Table 1.

Table 1

Likewise, remaining digits are determined. This process is 
pictorially shown in Figure 1. In the number x,y, x represents 
the first digit of multiplication and y represents the carry. 

Figure 1. Process of multiplication.

We will write this operation, for convenience, as 
R{m} = M = . 
Thus, R{3}=
M1 = 0344827586206896551724137931
P1 =1034482758620689655172413793, 
both clockwise in Figure 1. The M1 will be called as the basic 
number (BN).
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Other possible values of M

(a) Instead of starting with 1 (which has no carry), one can start 
with any of the numbers 2 to 9 which also do not have a carry 
as can be seen from Figure 1. Thus, Msare
M1 = 0344827586206896551724137931 
M2 = 1034482758620689655172413793
M3 = 3103448275862068965517241379
M4 = 1379310344827586206896551724
M5 = 2413793103448275862068965517
M6 = 1724137931034482758620689655
M7 = 0689655172413793103448275862
M8 = 2068965517241379310344827586
M9 = 2758620689655172413793103448

Thus, all the digits 1 to 9 at d1 have been covered. Hence 9 are 
the only possible Ms. Note that from BN to get M2, Y = 1, to 
get M3, Y = 31, to get M4, Y = 137931, and so on.

(b) In (a), if we do not get all the nine Ms, we can get them by 
starting with the remaining numbers as . 

(c) From M, P can be obtained by shifting d1to the left most 
place. However, this fails when n number of zerosexist at the 
end in M. This difficulty can be overcome as follows: Shift last 
(n+1) digits to the left most place and insert n number of zeros 
at the end. Thus, P will have n extra digit.

M10 = 3448275862068965517241379310
P10  = 10344827586206896551724137930
M11= 6896551724137931034482758620
P11 =  20689655172413793103448275860

Example 2: All R{4} are obtained as below.
(i)	 025641 is obtained with This is shown in Figure 2.

Figure 2. R{4}.

Then 102564 is obtained from this number with no carry digit 
4.Thus, 1 and 4 are covered, and 2,3,5,6,7,8,9 are left out.

(ii)	 Ms (051282,205128, 128205) are obtained choosing  = 2 
and no carry digits 8 and 5. 

	 Left out numbers are 3,6,7,9.
(iii)	Numbers (076923, 230769) are obtained by choosing =3 

and then no carry digit 9. Left out numbers are 6 and 7.
(iv)	 153846, 179487, are obtained by choosing = 6 and 7, 

respectively. 

These 9 Ms consist of 5 sets of 6 digits (0,1,2,4,5,6),(0,1,2,2,5,8), 
(0,2,3,6,7,9) (1,3,4,5,6,8), (1,4,7,7,8,9)

(v)  	More Ms when there is a 0 at the end. 
	 M10= 256410,then P10 = 1025640
	 M11 = 512820,then P11 = 2051280
	 M12 = 769230, then P12 = 3076920
	 Though Ms are 6-digit numbers, corresponding Ps are 

7-digit numbers.

Interesting examples

(i) Multiplication by a 2-digit number

Example 3 :R{11} =

M1 =
009174311926605504587155963302752293577981651376
146788990825688073394495412844036697247706422018
348623853211

It has 108 digits, a very auspicious number. Surprisingly, it is the 
number same as 1/109 ignoring the decimal point. In general, 
we don’t know M and even if we know, we don’t know how to 
relate it to the reciprocal of a number, such as 109.

The following 8 more Ms can be derived by finding the no 
carry digits. 

M2 =
01834862385321100917431192663027522935779816513761
46788990825688073394495412844036697247706422

M3 =
027522935779816513761467889908256880733944954128
4403669724770642201834862385321100917431192660550
45871559633

M4 =
0366972477064220183486238532110091743119266055045
871559633027522935779816513761467889908256880733
94495412844

M5 =
045871559633027522935779816513761467889908256880
733944954128440366972477064220183486238532110091
743119266055

M6 =
055045871559633027522935779816513761467889908256
880733944954128440366972477064220183486238532110
091743119266
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M7 =
06422018348623853211009174311926630275229357798165
13761467889908256880733944954128440366972477

M8 =
073394495412844036697247706422018348623853211009
174311926605504587155963302752293577981651376146
788990825688

M9 =
082568807339449541284403669724770642201834862385
3211009174311926605504587155963302752293577981651
37614678899

All have the last two digits distinct and multiples of 11. Since 
all the digits 1 to 9 are considered at the last digit, no more Ms 
can be derived. However, additional Ms are possiblewhen the 
zeros are present at the end of M. 

When M has 2zeros at the end

If M10 = 
9174311926605504587155963030275229357798165137614
6788990825688073394495412844036697247706422018348
62385321100, then 
P10= 
1009174311926605504587155963030275229357798165137
6146788990825688073394495412844036697247706422018
3486238532100.
Since M has two zeros at the end, P has 108 + 2 = 110 digits.

When M has 1 zero at the end

M11 = 0917431192660550458715596330275229357798165
1376146788990825688073394495412844036697247706422
0183486238532110

P11
1009174311926605504587155963302752293577981651376
146788990825688073394495412844036697247706422018
348623853210
This has 108 +1 = 109 digits. 
Similarly, other Ms and corresponding Ps are

M12 =
550458715596303027522935779816513761467889908256
8807339449541284403669724770642201834862385321100
917431192660

P12 =
605504587155963030275229357798165137614678899082
5688073394495412844036697247706422018348623853211
0091743119260

M13= 
45871559630302752293577981651376146788990825688
07339449541284403669724770642201834862385321100 
917431192660550

P13 = 
504587155963030275229357798165137614678899082568
807339449541284403669724770642201834862385321100 
91743119266050. 

M14 = 
275229357798165137614678899082568807339449541284
4036697247706422018348623853211009174311926605504
58715596330

P14 = 
302752293577981651376146788990825688073394495412
8440366972477064220183486238532110091743119266055
045871559630

M15 =
825688073394495412844036697247706422018348623853
2110091743119266055045871559633027522935779816513
76146788990

P15= 
908256880733944954128440366972477064220183486238
5321100917431192660550458715596330275229357798165
137614678890

M16 =
733944954128440366972477064220183486238532110091
743119266055045871559633027522935779816513761467
889908256880

P16 =
8073394495412844036697247706422018348623853211009
174311926605504587155963302752293577981651376146
788990825680

M17 =
3669724770642201834862385321100917431192660550458
715596330275229357798165137614678899082568807339
44954128440

P17 =
4036697247706422018348623853211009174311926605504
587155963302752293577981651376146788990825688073
394495412840

M18 = 
6422018348623853211009174311926605504587155963302
752293577981651376146788990825688073394495412844
03669724770
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P18 =
7064220183486238532110091743119266055045871559633
027522935779816513761467889908256880733944954128
440366972470

M19
1834862385321100917431192660550458715596330275229
357798165137614678899082568807339449541284403669
72477064220
P19 =
2018348623853211009174311926605504587155963302752
293577981651376146788990825688073394495412844036
697247706420

Note that all the above Ps are having first two and the last two 
digits same and multiples of 10. 

(ii) Multiplication by 10n

Example 4 R{10n} = (n zeros)1. P = 1(10nzeros)
R{100} = 001, and P = 100.

Properties of the closed loop

1.	 It is simple to draw.
2.	 It forms a closed loop. 
3.	 It gives both M and P simultaneously.
4.	 It gives all possible values of M and P.

III. CONCLUSION 
A new method of multiplication, where the multiplicand M 
and product P are not specified, only multiplier m is specified, 
is usedto evaluates M and P such that the two strings of digits 
in M are interchanged in P. The process of multiplication is 
explained with examples and represented pictorially as a closed 
loop. Maximum possible numbers of such numbers with the 
same number of digits in M and P is shown to be 9. However, 
additional Ps can be obtained when Ms have zeros at the end. 
These sets may consist of the same or different numbers. 
Properties of such a closed loop are summarized. Some very 
interesting numbers are generated. It will be an interesting 
exercise for the researchers to write the algorithm and verify 
the results.
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