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Abstract—Deep learning has revolutionized countless fields with 
its powerful capabilities, but this progress comes with a hidden 
cost—high energy consumption and growing environmental 
impact. As models become larger and more complex, the need 
for sustainable and energy-efficient AI has become increasingly 
urgent. This paper takes a closer look at the carbon footprint of 
modern deep learning systems and underscores the importance 
of building AI solutions that are not only intelligent but also 
environmentally responsible. We explore what it truly means for 
a deep learning system to be “energy efficient” and present key 
architectural strategies such as model pruning, quantization, 
knowledge distillation, and the use of lightweight models like 
MobileNet and EfficientNet. In addition, we examine how 
hardware-aware designs—including neuromorphic chips, 
FPGAs, and Edge AI devices—can play a vital role in achieving 
better energy-performance balance, especially when aligned 
with the algorithmic design. The paper also highlights ongoing 
challenges and trade-offs, particularly the tension between 
accuracy and efficiency, and the often-overlooked energy costs of 
training versus inference. Looking ahead, we discuss promising 
research directions involving Green AI metrics and AutoML 
tools for optimizing energy use. Ultimately, this study calls for a 
conscious shift in AI development practices—toward models and 
systems that are not only high-performing, but also sustainable 
and aligned with environmental goals.

Keywords—Energy-Efficient Deep Learning, Sustainable AI, 
Green AI Architectures, Model Compression Techniques, 
Edge AI and Neuromorphic Computing, Low-Power Machine 
Learning, Hardware-Aware Neural Networks

I. Introduction 
In recent years, the explosive growth of artificial intelligence 
(AI) has underscored the pressing need for sustainable 
design principles. The research paper Sustainable AI: 
EnergyEfficient Deep Learning Architectures for Edge 
Devices by Meenalochini Pandi et al. (2025) explores how 
edgeoptimized models—leveraging quantization, pruning, 
model compression, and neural architecture search—can 
slash energy consumption by up to 70% while maintaining 
competitive accuracy. This approach not only extends battery 
life in resourceconstrained devices but also trims the carbon 
footprint of deploying AI at scale [1]. Similarly, the survey 
Towards energyefficient deep learning for sustainable AI 
highlights systemic improvements—across infrastructure, data 
handling, modeling, training, deployment, and evaluation—to 

  

reduce resource use throughout the AI lifecycle. These studies 
collectively emphasize that sustainable AI  is not optional—
it is a foundational necessity as intelligent systems permeate 
everyday devices [2].

Sustainable AI is pivotal for aligning technological progress 
with ecological responsibility, and Ranpara’s paper highlights 
this by focusing on circular economy principles. The proposed 
multi-layered framework integrates energy-conscious 
computational models, machine learning algorithms, and 
formal optimization techniques—like mixed-integer linear 
programming and lifecycle assessments—to guide decision-
making for resource reuse and waste reduction. By applying 
the framework to real-world scenarios such as lithium-ion 
battery recycling and urban waste management, the paper 
demonstrates a 25% reduction in energy consumption 
and an 18% improvement in resource recovery efficiency, 
showcasing how AI can actively enable sustainability. This 
underscore sustainable AI’s importance in minimizing 
environmental impact while preserving performance and 
scalability, making it indispensable in today’s resource-
constrained world.

The significance of sustainable AI extends beyond theoretical 
promise to practical, measurable impact, as Ranpara’s 
study further illustrates. By optimizing logistics, the 
framework reduced transportation-related emissions by 
30%, and AI-driven classification improved urban-waste 
sorting accuracy by 20%. Such advancements demonstrate 
how energy-efficient architectures can serve multiple facets 
of a circular economy: enhancing production, improving 
resource use, and reducing emissions. Moreover, this work 
aligns with global sustainability initiatives—especially U N 
Sustainable Development Goals—by offering a scalable, 
scientifically grounded architecture. I n essence, sustainable 
AI—through frameworks like R anpara’s—bridges high-
level environmental objectives and real-world applications, 
enabling intelligent systems capable of delivering economic, 
ecological, and societal benefits. [3]

While efficient, compact architectures are critical, it is equally 
important to address the substantial environmental impact 
of large deep learning models. Zewe’s MIT News article 
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learning could become an environmental burden rather than 
a technological boon [7].

Energy efficiency in deep learning refers to the amount of 
computational work achieved (e.g., training or inference) per 
unit of energy consumed—typically measured in kilowatt-
hours (kWh)—often normalized against a performance 
metric such as accuracy or throughput. Charles Tripp et al.’s 
2024 empirical study “Measuring the Energy Consumption 
and Efficiency of Deep Neural Networks: An Empirical 
Analysis and Design Recommendations” introduces a 
comprehensive energy model grounded in node-level watt-
meter measurements. They analyzed 63,527 training runs 
across varying depths, architectures, and hardware, revealing 
non-linear relationships between network design and energy 
use that challenge simple assumptions like “fewer parameters 
= more efficient”. Based on this, they recommend combining 
hardware-aware design, memory hierarchy optimization, and 
algorithmic changes to truly maximize energy efficiency [8].
Complementing this empirical foundation, GarcíaCarbajal 
et al.’s 2025 journal paper, Towards an Energy Consumption 
Index for Deep Learning Models, introduces a standardized 
Energy Consumption Index (ECI) to quantify energy 
used per task across training and inference. By evaluating 
well-known architectures—AlexNet, R esNet, E fficientNet, 
ConvNeXt, and Swin Transformer—on GPUs like TITAN XP, 
the study uncovered dramatic efficiency differences tied to 
architecture, device, and phase of model lifecycle. The ECI 
facilitates fair comparisons and promotes transparent reporting 
of energy-use data. Such a metric aligns directly with the 
motivation behind this work: to develop an Energy-Efficient 
Deep Learning Architecture for Sustainable AI, it becomes 
imperative to incorporate standardized energy efficiency 
metrics during design, ensuring proposed architectures not 
only perform but also demonstrate quantifiable environmental 
benefits [9].

III. ARCHITECTURAL TECHINIQUES 
FOR EFFICIENCY 

Model pruning and quantization have become indispensable 
techniques for reducing the computational and energy overhead 
of deep neural networks. A cutting-edge study titled Automatic 
Joint Structured Pruning and Quantization for Efficient 
Neural Network Training and Compression (Qu et al., 2025) 
introduces the GETA framework, which seamlessly combines 
structured pruning with quantization-aware training. GETA 
builds a quantization-aware dependency graph (QADG) to 
guide pruning, and employs a partially projected stochastic 
gradient method ensuring bit-width constraints across 
layers are satisfied. R esults show GETA produces smaller, 
high-performance models—often outperforming traditional 
two-stage methods—demonstrating that co-optimization of 
pruning and quantization enhances energy efficiency without 
compromising accuracy [10].
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(January  2025)  emphasizes  that  training  generative  Ai  models 
with  billions  of  parameters,  such  as  GPT4,  consumes  vast  
electricity  and  water  resources—exerting  stress  on  electric 
grids  and  municipal  water  systems.  further,  the  arXiv  study
Holistically Evaluating the Environmental Impact of Creating 
Language  Models  examined  models  ranging  from  20  m  to 
13  B  parameters,  concluding  that  a  single  series  of  model 
developments  emitted  493  metric  tons  of  Co₂  and  consumed 
nearly  2.8  million  l  of  water—half  of  which  stemmed  from 
development  stages  often  overlooked  in  reporting  [4].
Sustainable Ai  is essential for navigating the complex balance 
between technological innovation and ecological stewardship.
ren  et  al.  confront  two  prevailing  narratives:  one  stresses 
the  substantial  environmental  footprint  of  large  language 
models  (llms)—including  high  energy  consumption,
Co₂  emissions,  and  water  usage—while  the  other  suggests 
llms  may  outperform  human  labor  in  eco-efficiency.  Their  
comparative  analysis  reveals  that,  in  the  u.S.,  conventional 
llms  like  llama370b  consume  substantially  less  energy—
by  factors  of  40  to  150—compared  to  humans  performing 
the  same  tasks,  and  lightweight  LLms  like  gemma2Bit 
achieve  ratios  of  1,200  to  4,400  This  duality  emphasizes  that 
sustainable Ai  isn’t just about reducing computational waste,
but  about  enabling  smarter,  more  efficient  workflows  that  can 
outpace  traditional  systems—effectively  positioning  llms  as
a  potential  lever  for  environmental  progress  [5].

II. MOTIVATION
the  past  decade  has  witnessed  a  meteoric  climb  in  deep 
learning model sizes and complexity, driven by breakthroughs
in architectures like  cnns and transformers.  this escalation,
however, comes at a steep environmental price.  in their 2023
study,  Xu  et  al.  analyzed  the  energy  efficiency  of  training 
multiple  neural  network  architectures,  revealing  that 
larger  and  deeper  models  consume  disproportionately  more
power  during  training—and,  as  a  result,  emit  significantly 
higher  Co₂—compared  to  smaller,  optimized  networks.  Their  
empirical  findings  underscore  an  urgent  need  to  balance 
model  performance  with  ecological  cost,  highlighting  that 
even  accuracy  gains  may  not  justify  the  exponential  rise  in 
energy  consumption  [6].

the  environmental  toll  of  deep  learning  research  extends 
beyond  model  training  to  include  the  broader  experimental 
pipeline.  in a compelling study titled  From Clicks to Carbon:
The Environmental Toll of Recommender Systems, researchers 
compared  deep  learning–based  recommender  systems  with 
traditional  ml  models  and  found  a  staggering  42×  increase
in  Co₂  emissions  over  a  decade  (2013–2023),  despite 
improvements  in  hardware  efficiency.  on  average,  a  single 
deep  learning  research  experiment  consumed  ~6,854  kwh—
eight times more energy than conventional methods, without 
necessarily  offering  proportional  performance  gains.  This 
work  highlights  that  without  transparency  in  energy  usage 
and  deliberate  architecture  optimization,  the  rise  of  deep
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Further illustrating the synergy between pruning and 
quantization, Balaskas et al. (2023) in their work Hardware-
Aware DNN Compression via Diverse Pruning and Mixed-
Precision Quantization, propose an automated, hardware-
sensitive framework. Leveraging reinforcement learning, 
their method simultaneously applies coarse- and fine-grained 
structured pruning and per-layer mixed-precision quantization 
to tailor models for embedded accelerators. Evaluated on 
CIFAR-10/100 and I mageNet, this approach achieves an 
average 39% reduction in energy consumption with only 
a minimal 1.7% drop in accuracy, outperforming baseline 
compression strategies. By adapting pruning intensity and 
quantization precision to hardware capabilities, this work 
exemplifies how architectural efficiency can align with 
sustainability goals in AI[11].

Knowledge distillation enables efficient AI  by transferring 
learning from a large, high-capacity teacher model to a 
compact student model, reducing compute and energy costs 
while preserving performance. W u et al.’s 2025 paper, 
Knowledge Distillation with Adaptive Influence Weight 
(KDAIF), advances this concept by integrating influence 
functions—borrowed from robust statistics—to assign 
dynamic, data-driven weights to training samples under 
the principles of Sustainability, Accuracy, Fairness, and 
Explainability (SAFE). KDAIF not only allows the student 
to learn more efficiently (reducing training time and energy) 
but also enhances model transparency by highlighting which 
examples matter most. E xperiments on CIFAR10/100 and 
GLUE benchmarks show that KDAIF  outperforms existing 
distillation methods in both performance and learning 
efficiency—thereby offering a powerful template for future 
energy-conscious architectures [12].

Moving beyond traditional neural networks, Konstantaropoulos 
et al. (2025) introduce a compelling energy-saving framework 
in Dynamic Activation with Knowledge Distillation for 
EnergyEfficient Spiking Neural Network Ensembles. Here, 
a high-performance ANN teacher guides an ensemble of 
lightweight spiking neural networks (SNNs), each learning 
distinct aspects of the task. By dynamically activating only 
relevant student SNNs per input, this ensemble reduces 
computation and energy—achieving up to 20× fewer FLOPs 
and a 65% drop in energy use, with only a ~2 % accuracy 
loss on CIFAR10. This architecture demonstrates how 
knowledge distillation can be combined with neuromorphic 
designs to build highly efficient, context-aware systems ideal 
for energy-constrained or edge deployments [13].

Lightweight architectures are streamlined neural network 
designs that balance compactness with performance 
efficiency—typically achieved through innovative building 
blocks like depthwise separable convolutions, inverted 
residuals, and compound scaling. MobileNet and EfficientNet 

exemplify this paradigm. MobileNet architectures (V1–V4) 
have become foundational in designing energy-efficient AI 
for edge and mobile environments. These models utilize 
depthwise separable convolutions: a depthwise convolution 
followed by a pointwise convolution, significantly reducing 
computation without substantial accuracy loss. A recent 
2025 study, Energy-Efficient AI for Medical Diagnostics: 
Performance and Sustainability Analysis of ResNet and 
MobileNet, empirically demonstrates that MobileNet 
consumes considerably less power and trains faster than 
ResNet when classifying thoracic diseases—translating to 
lower energy cost and carbon emissions [14].

IV. HARDWARE – AWARE NEURAL DESIGN
Neuromorphic processors, inspired by the brain’s structure 
and function, offer a transformative path toward ultra-efficient 
AI. Vogginger et al. (2024) in Neuromorphic hardware for 
sustainable AI data centers highlight how neuromorphic 
systems like Intel Loihi and IBM TrueNorth drastically reduce 
energy consumption and alleviate data-transfer bottlenecks 
by merging memory and processing, processing spikes only 
when triggered—achieving 10–100× lower power usage 
compared to traditional accelerators. Complementing this, 
B2Bdaily’s recent overview underscores real-world gains: 
Innatera’s T1 and Loihi 2 NPUs achieve up to 100× power 
savings while supporting real-time inference in edge devices. 
These neuromorphic architectures deliver low-latency, event-
driven processing, making them ideal for sustainable AI 
systems that require both performance and minimized energy 
footprint [15].

FPGAs enable custom, energy-optimized AI pipelines tailored 
to specific models. The 2025 study Optimizing Deep Learning 
Acceleration on FPGA for RealTime and ResourceEfficient 
Image Classification by Mouri Zadeh Khaki & Choi shows that 
an FPGA-accelerated CNN implementation can lower energy 
consumption by 40% while maintaining accuracy, thanks to 
integer arithmetic support and hardware-level optimizations 
like pipelining and clock gating. Earlier work in FPGA/DNN 
CoDesign emphasizes the co-design methodology, where 
models and FPGA architecture are optimized together to yield 
up to 2.5× improvement in energy efficiency over GPUs, all 
without sacrificing performance. These findings demonstrate 
that FPGAs are a flexible and sustainable solution, enabling 
just-in-time customization of AI  workloads for maximum 
power efficiency [16].

Deploying AI directly on edge devices further promotes 
sustainable AI by minimizing data transmission and cloud 
reliance. Peccia et al. (2024) in Efficient Edge AI: Deploying 
CNNs on FPGA with the Gemmini Accelerator achieved 
36.5 GOP/s/W  efficiency running real-time YOLO v7 on a 
Xilinx ZCU102 FPGA—demonstrating that edge-AI solutions 
can rival server-level performance at a fraction of the energy 
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quantization-inspired energy savings can trigger massive 
accuracy drops under hardware faults, with up to 66% 
misclassification versus only 9% in precise accelerators. The 
study highlights that energy-efficient approximations may 
introduce vulnerabilities—not only reducing accuracy but 
also affecting reliability. Consequently, sustainable AI must 
address accuracy vs. efficiency as a multi-faceted trade-off, 
incorporating robustness and resilience at the hardware layer 
and ensuring that energy savings do not incur unacceptable 
performance or safety costs [20].

Training vs. inference energy use: Balancing training and 
inference energy use is a critical challenge in building energy-
efficient deep learning architectures for sustainable AI. 
While training deep learning models is undeniably resource-
intensive, inference often accounts for a larger share of 
lifetime energy usage. Yarally et al. (2023), in Uncovering 
Energy-Efficient Practices in Deep Learning Training, 
revealed that careful adjustments—like reducing model 
complexity and using B ayesian hyperparameter tuning—
can halve training energy. However, even with optimized 
training, inference remains the dominant phase, especially in 
real-world applications involving continuous deployment and 
updates [21].

Efforts to minimize energy use across both phases require 
different approaches. Y arally et al. showed that reducing 
unnecessary experiments and tuning hyperparameters with 
cost-aware strategies effectively lowers training energy 
without sacrificing accuracy. H owever, the inference phase 
demands tailored architecture design—models must be 
compact, hardware-aware, and quantized for efficient 
deployment. The From Computation to Consumption study 
further supported this, indicating that training and inference 
cannot be optimized in isolation; profiling GPU and memory 
usage during both phases is essential to identify dominant 
energy sinks [22].

VI. FUTURE SCOPE 
Establishing robust Green AI metrics and refining AutoML 
to optimize energy use—are essential for guiding the next 
generation of energy-efficient deep learning architectures 
for sustainable AI.

As the environmental footprint of AI grows, standardized 
metrics are urgently needed to guide sustainable development. 
Clemm et al. (2024), in Towards Green AI: Current Status and 
Future Research, advocate for life-cycle–based assessment 
frameworks that integrate model, data, and infrastructure 
stages—enabling holistic measurement of energy use and 
carbon emissions [23].

Building on this, Budennyy et al. (2022) developed Eco2AI, 
an open-source toolkit that quantifies both energy consumption 
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cost.  Additionally,  Susskind  et  al.’s  2023  study  ULEEN 
presented  a  novel  weightless  neural  network  architecture,
running  on  FPgA  and  ASic,  delivering  up  to  13  million 
inferences per Joule—over  7×  more  efficient  than  traditional 
quantized  models,  while  maintaining  high  accuracy.  These
advancements  confirm  that  edge  Ai,  driven  by  hardware-aware 
design,  can  sustain  sophisticated  intelligence  on  constrained 
devices  without  compromising  sustainability  [17].

Algorithm–hardware  codesign  is  a  pivotal  technique in
developing  deep  learning  systems  that  are  not  only 
performant  but  also  energyconscious,  advancing  the  goal of
sustainable  Ai.  Algorithm–hardware  codesign  integrates 
neural architecture design directly with hardware constraints,
enabling  simultaneous  optimization  of  both  dimensions  for
superior  energy  efficiency.  in  fan et  al. (2021),  Algorithm and 
Hardware  Codesign  for  Reconfigurable  CNN  Accelerator,
the  authors  present  a  framework  that  jointly  searches  for
neural  subnetworks  and  hardware  configurations  to  achieve 
Paretooptimal  trade-offs.  Their  results  show  up  to  8.5× higher 
energy  efficiency,  3×  lower  latency,  and  2–6%  improved
accuracy  over manually designed models like  resnet101 and 
mobileNetv2  This  codesign  methodology  ensures  that  model 
choices—from  layer  types  to  structure—are  directly  informed
by  hardware  performance  metrics,  making  it  particularly 
effective  for  sustainable  Ai  where  minimizing  energy  per  
inference  is  crucial  [18].

V. ChALLENGES
Accuracy vs. efficiency: navigating accuracy vs. efficiency
within  deep  learning  architectures  is  a  critical  challenge.
Balancing  marginal  performance  gains  with  energy 
consumption—and  ensuring  fault-tolerant  operation—must  be 
integral to any sustainable Ai  design paradigm.  yang, Adamek
&  Armour’s  2024  study  DoubleExponential  Increases  in 
Inference Energy: The Cost of the Race for Accuracy  conducted 
an  extensive  evaluation  of  over  1,200  imageNet  classification
models.  their analysis revealed a steep  diminishing return 
on  accuracy  gain:  every  incremental  boost  in  top-1  accuracy  
requires  exponentially larger inference energy, highlighting 
that pursuing marginal gains can be energetically prohibitive.
to guide sustainable model selection, the authors introduced 
an  energy-efficiency scoring system, promoting models that 
offer  balanced  accuracy  and  power  consumption.  This  work
illustrates a core challenge in sustainable Ai: beyond a certain 
point,  minor  improvements  in  accuracy  are  not  justified  by 
the  disproportionate  energy  they  require—demanding  a  more 
nuanced,  eco-aware  approach  to  model  design  [19].

Complementing  this,  Siddique,  basu  &  hoque  (2021)  in
Exploring  FaultEnergy  Tradeoffs  in  Approximate  DNN 
Hardware  Accelerators  explore  accuracy  loss  when 
deploying  approximate  computing  to  reduce  energy.  their
experiments on  mniSt  and FashionmniSt  show that  small,
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and CO₂ emissions during training and inference, promoting 
transparency and reproducibility. These efforts mark a 
pivotal shift: moving from arbitrary reporting to evidence-
based sustainability standards. Future research must expand 
these metrics to benchmarking competitions, journals, and 
conferences—ensuring that energy efficiency becomes a 
mandatory performance dimension alongside accuracy [24].
AutoML has enormous potential to automate sustainable 
model design, but its own computational cost can be 
prohibitive. Hennig et al. (2024) presented a multi-objective 
AutoML  framework—Towards Leveraging AutoML for 
Sustainable Deep Learning—which jointly optimizes 
accuracy and energy consumption when tuning Deep Shift 
Neural Networks, achieving high accuracy with significantly 
reduced compute [25].

VII. CONCLUSION
As AI continues to evolve and expand its role in everyday life, 
the importance of building it sustainably has never been more 
critical. This work explored a wide range of strategies focused 
on improving the energy efficiency of deep learning systems. 
We looked at how architectural techniques—like pruning, 
quantization, knowledge distillation, and lightweight models 
such as MobileNet and EfficientNet—help cut down on energy 
use without sacrificing performance. We also examined how 
hardware-aware solutions, including neuromorphic chips, 
FPGAs, and edge AI, can make AI smarter and more power-
conscious. Alongside these, algorithm–hardware co-design 
emerged as a promising direction to simultaneously boost 
speed and reduce environmental impact[26-27].

Real-world examples, such as TinyML and TinyissimoYOLO, 
show that it’s possible to build powerful AI systems that run 
on extremely low energy, making them ideal for real-time 
and portable use. Still, challenges remain. Balancing model 
accuracy with energy use, and managing the large energy gap 
between training and inference, are ongoing issues. The future 
of green AI will also depend on better metrics for measuring 
energy impact and smarter AutoML tools that can build 
energy-efficient models automatically.

In the end, making AI sustainable isn’t just about improving 
technology—it’s about rethinking how we build, train, and 
deploy intelligent systems. As AI continues to shape the future, 
it’s essential for researchers, developers, and policymakers 
to work together to put energy efficiency at the heart of AI 
design. By taking a thoughtful and collaborative approach, we 
can ensure that the next generation of AI is not only powerful 
but also responsible—advancing innovation while respecting 
the limits of our planet.
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