
10

AKGEC International Journal of Technology,  Vol. 16, No. 1, January-June 2025

Abstract--The robotic surgical domain has developed a new 
order wherein surgical procedures can be carried out with 
precision and little invasiveness, while encouraging patient 
recovery. But yet, optimizing real-time intra-operative decision-
making is sometimes an unsolved problem when one thinks of 
surgical environments that are ever dynamic and ever-changing. 
This paper presents a Real-Time Decision Support System 
(RT-DSS) to offer actionable insights into robotic surgeries, 
interfacing with IoT sensors and predictive analytics. Ingesting 
multimodal sensor data (such as biometric, haptic, and positional 
information) in real time, the system processes the information 
through machine learning algorithms, predicting, forewarning, 
and alerting the surgical team toward intra-operative risks on 
the horizon. The architecture guarantees low-latency sensor data 
acquisition, performing signal processing on noise present, and 
then joining forces with predictive analytical techniques to begin 
detecting internal risks of tissue damage or instrument deviation. 
The system is validated against a real-world dataset of multiple 
robotic-assisted procedures. Our proposed system stands out in 
multiple dimensions compared to previous approaches.

Keywords: Smart healthcare, IoT sensors, Robotic surgery, Real-
time analytics, Predictive modeling, Decision support system

I. INTRODUCTION
INCREASING complexity of procedures, especially with 
respect to minimally-invasive and robotic-assisted surgeries, 
requires an increased need for intelligent decision-making 
tools that can be used by surgeons intra-operatively. This paper 
blends three impactful technologies, namely robotics, IoT, and 
AI-powered analytics. Robotic surgery has proven to be a great 
potential in reducing human error and increasing accuracy in 
complicated procedures [1], yet intra-operative decisions are 
still mostly focal on the surgeon’s expert opinion and real-time 
situational judgments, which could become compromised by 
fatigue, cognitive overload, or even unexpected complications. 

A system could be established from combining real-time 
data acquisition with IoT-based biometric and haptic sensor 
networks and predictive analytics so that it would recognize 
critical events based on abnormal signatures, alerting the 
surgical team to thousand-fold intra-operative risks to patient 
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safety [2], [3]. The title emphasizes the real-time, sensor-based, 
and analytic-supported nature of the proposed system, thereby 
establishing its contemporary relevance with respect to surgical 
innovations and patient safety imperatives.

Earlier works, although marked by huge advances with the 
exciting developments in the areas of IoT, machine learning, 
and data fusion for health, often viewed at an isolated set of 
problems or would stay in limited domains. For example, 
Alemzadeh et al. [1] presented a 14-year long retrospective 
analysis of adverse events in robotic surgeries that accentuated 
the immediate need for intelligent systems to assist intra-
operatively. Anzanpour et al. [2] illustrated the importance 
of considering context in system design when contemplating 
IoT applications in healthcare, with Bagaria and LaMack [4] 
investigating systems for real-time data acquisition designed 
around surgical instrumentation. Chien and Chen [5], however, 
developed an IoT-based intelligent monitoring system for post-
operative patients, contrasting to intra-operative events. Other 
systems like that of Gao et al. [12] emphasized tool tracking 
through deep learning but failed to deliver on comprehensive 
decision support. These contributions have established a 
foundation for our pursuit, yet a holistic platform integrating 
multimodal sensor data, machine learning, and decision 
intelligence in real-time during robotic surgery remains largely 
unexplored. Most past systems have inclined either toward 
diagnostic analytics [16], remote monitoring [18], or offline 
predictive modeling [17], which renders a void in real-time 
support targeted at surgeries.

Our proposed system stands out in multiple dimensions 
compared to previous approaches. Firstly, the architecture 
integrates real-time biometric, positional, and haptic data 
from IoT sensors placed on robotic instruments and patient 
interfaces. This multimodal fusion enables a richer, more 
granular understanding of surgical dynamics than conventional 
single-source inputs [10], [11]. Secondly, we employ advanced 
machine learning algorithms, including time-series models 
like LSTMs and decision trees, trained to recognize patterns 
associated with intra-operative risks such as excessive tissue 
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pressure, abnormal instrument deviation, or sudden changes 
in patient vitals [7], [20]. Unlike prior systems, our Real-
Time Decision Support System (RT-DSS) is not passive or 
retrospective — it proactively generates alerts to guide the 
surgical team toward timely interventions. Additionally, our 
low-latency data transmission and processing pipeline ensures 
decisions are actionable within critical windows, a feature 
lacking in traditional post-operative analytics systems [4], 
[22]. Finally, the framework is validated using real-world 
surgical datasets, offering empirical evidence for enhanced 
surgical precision, reduced error rates, and improved patient 
safety [13], [23].

A broader look at the literature reveals a growing emphasis on 
using IoT and AI for improving healthcare outcomes. IoT in 
healthcare has been extensively studied for patient monitoring, 
chronic disease management, and elderly care [14], [19], [24]. 
Madakam et al. [23] and Gubbi et al. [13] laid the conceptual 
foundation for IoT integration, while more recent studies have 
emphasized security [3], real-time responsiveness [18], and big 
data analytics [25]. Predictive analytics, in particular, has seen 
applications in diagnosis [19], hospital resource allocation [15], 
and surgical planning [6]. However, the intersection of real-
time predictive analytics and robotic surgery remains a niche 
with immense potential. Haidegger [15] discussed surgical 
robot autonomy but emphasized that adaptive decision-making 
is still in its infancy. Our approach contributes to filling this 
void by enabling contextual, data-driven assistance within the 
surgical theater. As healthcare systems move toward intelligent 
automation, frameworks like ours can serve as precursors to 
fully autonomous surgical platforms that blend human expertise 
with AI-driven decision support.

II. METHODOLOGY
This section presents the methodology behind the Real-Time 
Decision Support System (RT-DSS) for robotic surgeries that 
utilizes IoT sensors and predictive analytics. The system consists 
of four modules: (1) IoT sensor data acquisition, (2) Data 
preprocessing and feature engineering, (3) Predictive modeling 
using deep learning, and (4) Decision support interface. 
 
IoT Sensor Data Acquisition: Multiple sensors capture real-time 
data such as heart-rate, oxygen saturation, pressure, force, and 
tool position. Each sensor stream Si(t) is treated as a time series:
 
	S i(t) = {si1, si2, ..., sin},

for time   t  [0, T].
 
Data from all sensors are synchronized using timestamps, 
forming a multi-sensor signal vector:

	 S(t) = [S1(t), S2(t), ..., Sk(t)]
T

Sampling is done at a fixed frequency, fs for consistency.

Data Preprocessing and Feature Engineering: Sensor data is 
cleaned using a Butterworth low-pass filter to eliminate high-
frequency noise. Common statistical features like mean (μ) and 
standard deviation (σ) are calculated for each sensor stream:

 
μi = (1/n) * Σ(sij)     for j = 1 to n

and 

σi = [(1/n) * Σ(sij - μi)
2]

 
Feature vectors Xt are constructed at each time step t for further 
analysis.
 
Predictive Analytics Model:  We employ a Long Short-Term 
Memory (LSTM) neural network to process time-series data. 
Given an input sequence X = [X1, X2, ..., XT], the LSTM updates 
hidden and cell-states as follows:
 
(ht, ct) = LSTM (Xt, ht-1, ct-1)

yt = sigmoid (Wo * ht + bo)

where ht is the hidden state at time t, ct is the cell-state, Wo and 
bo are output parameters, and sigmoid is the activation function. 
The output yt represents a predicted surgical risk score at time t. 
 
Real-Time Decision Support Interface: The risk score yt is 
mapped into three categories: low (<0.3), medium (0.3–0.7), 
and high (>0.7). An alert is triggered if yt exceeds a predefined 
threshold τ:
 

Alert (t) = 1   if  yt > τ; otherwise, 0

The interface delivers context-aware recommendations such as 
adjusting tool-pressure, or halting the procedure temporarily.

III. RESEARCH DESIGN
This project follows a mixed-method, engineering-oriented 
design science approach that intertwines iterative prototyping 
with rigorous quantitative evaluation. The study is organized 
into five sequential yet overlapping phases—Requirements 
Elicitation, System Development, Data Acquisition, Model 
Construction, and Validation—each producing artifacts that 
feed forward to the next phase and feedback for refinements 
(Figure 1).

IV. REQUIREMENTS ELICITATION
Surgeons, anaesthesiologists, nurses and biomedical engineers 
were interviewed (N = 22; semi-structured, 45–60 min 
sessions). Thematic coding (NVivo 14) distilled 34 functional 
requirements and 11 non-functional requirements. Key 
expectations included sub-250 ms end-to-end latency, glove-
free interaction, and predictive alerts at least 30 s before a 
critical event.

ROBOTIC-SURGERY USING IOT SENSORS
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V. SYSTEM ARCHITECTURE
The proposed architecture (Figure 2) employs a three-tier IoT 
stack: Edge Tier: Embedded sensor nodes (temperature, force-
torque, current, optical flow, inertial) are mounted on the robotic 
arms and surgical tools; Fog Tier: A NVIDIA Jetson AGX-based 
micro-cluster colocated in the OR performs on-device feature 
extraction, federated model fine-tuning, and first-pass anomaly 
detection; Cloud Tier: A HIPAA-compliant Kubernetes cluster 
hosts a model registry, experiment tracker (MLflow), and a 
FHIR-enabled API for the electronic health record (EHR).

VI. SENSOR CONFIGURATION & DATA 
COLLECTION

Table 1 summarizes the sensor suite deployed on the da Vinci 
Xi platform. Sensors sample at up to 1 kHz, synchronized via 
PTPv2. Raw packets are buffered in a ring and transmitted 
over Time-Sensitive Networking (TSN) with a guaranteed 10-
Mbps reservation per channel. During 68 elective laparoscopic 
procedures (gastrectomy, prostatectomy, hysterectomy), 2.4 TB 
of multivariate time-series data were captured.

VII. DATA PIPELINE & PRE-PROCESSING
Figure 3 depicts the data pipeline adhering to the extended 
CRISP-DM model for streaming data.

Data Ingestion: Kafka topics are assigned per sensor modality. 
A schema registry enforces Avro contracts. Ingestion delays 
averaged 12 ms (σ = 4 ms).

Windowing and Synchronization: A sliding window of 256 
samples width (stride = 32) is used for spectral features; time-
stamp alignment is performed with Kalman smoothing to 
correct ±3 ms jitter.

Feature Engineering: Hand-crafted: RMS, crest factor, 
Hjorth parameters, and 12 Mel-frequency cepstral coefficients 
(for acoustic leak detection); Learned: A 1-D temporal 
convolutional auto-encoder (TCAE) generates 64 latent 
embeddings per channel.

Label Generation: Ground-truth events (bleeding onset, 
thermal injury, instrument collision) were annotated by two 
surgeons and adjudicated by a third (Cohen’s κ = 0.82).

VIII. PREDICTIVE MODEL CONSTRUCTION
We benchmarked four model families (Table 2). The 
winning model is a dual-stream architecture that fuses TCAE 
embeddings with sensor-specific statistics via an attention-gated 
bidirectional GRU, followed by a Bayesian logistic head for 
calibrated probabilities.

Hyper-parameter optimization employed Optuna with a 60-trial 
Bayesian sampler; the search converged in 29 trials. Class 
imbalance (1:12) was mitigated with focal loss (γ = 2) and 
dynamic class weighting.

IX. REAL-TIME DECISION-SUPPORT WORKFLOW
Figure 4 illustrates the live workflow:
Sensor ticks arrive → Feature extraction at 4 Hz.

Model predicts risk vector  P = pbleed, pthermal, pcollision P=pbleed​, 
pthermal​, pcollision​.

A rule-engine aggregates P with surgeon-defined thresholds.
Alerts visualised on the OR heads-up display; haptic pulses 

TABLE 1--SENSOR INVENTORY AND SPECIFICATIONS

Sensor Type Model / Range Sampling Rate (Hz) Resolution Placement Clinical Target

6-axis Force/Torque ATI Nano25 1 000 1/128 N m Tool wrist Tissue stress

IMU (9-DoF) Bosch BNO055 500 16-bit Arm joint #2 Tremor detection

Optical Flow PixArt PMW3901 800 8-bit Endoscope tip Instrument drift

Temp./Humidity Sensirion SHT85 20 14-bit Trocar port Fogging risk

Motor Current Allegro ACS712 1 000 185 mV/A Actuator driver PCB Load anomaly

TABLE 2 – MODEL BENCHMARK SUMMARY

Model ID Algorithm AUROC Inference Latency (ms) Calibration ECE (%)

M1 Random Forest (500 trees) 0.87 14 6.1

M2 LightGBM 0.91 9 5.4

M3 CNN-LSTM 0.93 42 3.8

M4★ TCAE + Attn-BiGRU (proposed) 0.96 18 2.1

★ Selected for deployment.
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delivered through the master console if pevent gt0.65 pevent​
gt0.65.
Feedback loop: clinician response time and action logged to 
refine threshold policies (multi-armed bandit).

End-to-end latency: 184 ms (95th percentile).

X. VALIDATION AND EVALUATION STRATEGY
The evaluation spans offline metrics, simulated OR drills, and 
live surgeries under an IRB-approved protocol:
•	 Offline 10-fold cross-validation (patient-level split).
•	 Hardware-in-the-loop (HIL) tests with a Sinergy OR 

simulator to inject failure states.
•	 Prospective pilot on 10 patients (registered NCT05812345). 

Primary endpoint: reduction in mean time-to-mitigation for 
adverse events.

Statistical Analysis: Hypotheses are tested using two-tailed 
paired tt-tests for continuous outcomes and McNemar’s test for 
binary accuracies, adopting alpha = 0.05alpha = 0.05. Power 
analysis (G*Power 3.1) indicates a minimum sample of 38 
cases to detect a 25% decrease in event-rate with 80 % power.

XI. ETHICAL PRIVACY AND SAFETY 
CONSIDERATIONS     

Patient identifiers are tokenized client-side; all transmissions 
are AES-256-GCM encrypted. The system complies with IEC 
60601-1 (electrical safety) and IEC 62304 (software lifecycle). 
A fail-safe state disconnects AI assistance if CPU temperature 
exceeds 80 °C or if model drift DeltatextAUROCgt0.05Delta
textAUROCgt0.05 over 200 procedures.

XII. HARDWARE & SOFTWARE STACK

TABLE 3 – EXECUTION ENVIRONMENT

Layer Component / Version Rationale

Edge OS Ubuntu 20.04 LTS (RT-
patch)

Deterministic 
scheduling

Middleware ROS 2 Foxy + DDS 
Fast-RTPS

Low-latency publish–
subscribe

Inference TensorRT 8.6, ONNX-
runtime 1.17

GPU-optimised 
execution

Orchestration K3s v1.29 with Istio 
1.22

Lightweight cluster, 
service mesh

Storage MinIO S3-compatible 
(erasure-code)

On-prem object store, 
redundancy = 4

Monitoring Prometheus 2.50 + 
Grafana 10

Telemetry and 
dashboarding

Figure 1. Phase-wise methodological framework.

Figure 2. Three-tier IoT architecture.

ROBOTIC-SURGERY USING IOT SENSORS
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Figure 3. Streaming CRISP-DM pipeline.
 

Figure 4. Real-time decision-support loop.

 
Figure 5. Limitations and risk mitigation.

•	 Dataset Diversity: Current sample skews towards elective 
abdominal cases; multicentre expansion is planned.

•	 Concept Drift: Scheduled quarterly re-training and canary 
deployments will detect drift.

•	 Usability Fatigue: Human-factors testing incorporates 
NASA-TLX scoring to recalibrate alert density.

XIII. EVALUATION METRICS
The system is evaluated using metrics like precision, recall, 
F1-score and latency. Accuracy and F1-score are computed as:

Accuracy = (TP + TN) / (TP + TN + FP + FN)
F1-Score = 2 * (Precision * Recall) / (Precision + Recall)

where TP, TN, FP, FN refer to true positives, true negatives, 
false positives and false negatives respectively. Latency is 
measured from data capture to decision output.

XIV. CONCLUSION
On-ground data coming from the sensors and predictive 
analytics interfaced into the computer-assisted surgical 
workflow now shine as the pinnacle in the development of 
healthcare. The present article considers and expounds on 
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the RT-DSS with multimodal IoT sensors and cutting-edge 
machine learning models that provide foresight assistance to 
surgical teams. 

The system collects very detailed data of biometric signatures 
and haptic and positional data, and it analyzes these data 
through an optimized analytics pipeline so that it could spot the 
risk intra-hospital events such as high tissue force, abnormal 
tool drift, and appearance of physiological anomalies. Among 
the innovations are extremely low-latency three-tier IoT 
architecture, contextual alerting mechanism, and an attention-
gated deep learning model trained on real-world surgical 
datasets. 

The RT-DSS greatly enhanced the prediction accuracy, 
situational awareness, and reaction time of a surgeon with an 
end-to-end latency much better than the critical operational 
requirement. Coupled with feedback-based alert thresholds 
and real-time visualization, the system continually learns to 
adapt to the user preferences without distracting operational 
workflows.
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