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Abstract -- Starting from a general dual input single operational 
amplifier (OA) circuit, we obtain a difference amplifier and a single 
input circuit. The gain constant adjustment facility is provided by 
adding one resistor in the latter category of circuits. The technique 
is demonstrated with a difference amplifier, an active bridge 
circuit, first and second order all pass filters. The proposed circuits 
are better suited for fabrication both in discrete and integrated 
forms. OA is replaced by some well-known active devices. 

Keywords: Active RC all-pass filters, Gain constant, Difference 
amplifier, Wheatstone bridge

I. INTRODUCTION
Very recently, Dutta Roy [1] proposed an RC active first order 
all-pass filter using a finite gain difference amplifier (FGDA). 
Though he confined himself to the first order all-pass filter using 
op-amp, he did not consider at all the realization of FGDA using 
OA. We have given a general dual input circuit and derived the 
circuit for FGDA in Section 2 (Case A). Case B deals with the 
single input circuit. We have introduced an active bridge. Gain 
constant (GC) adjustment technique is described in section 3. 
Its functioning is demonstrated by applying it to a difference 
amplifier, and first and second-order all-pass filters. Section 4 
gives the conclusions.

II. A GENERAL DUAL-INPUT CIRCUIT
Consider the general dual input circuit shown in Fig. 1 where 
N is a 3-terminal network with the voltage transfer function 
(VTF) TN(s).

By superposition theorem the output voltage 

	 (1)

Figure 1. A general dual input circuit.
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Case A
Let us replace N by a potential divider circuit shown in Fig. 2. 

Figure 2. A difference amplifier.

or

	 (2)

Let 

	 (3)

Then, from   (2)

(4)

Let 
	 (5)

then the condition in (3) will be satisfied. The circuit acts as 
FGDA of GC K. Note that the GC can be adjusted by varying 
two resistors R2 and R4. However, it has finite input resistances 
at both the input terminals, and buffer(s) will be required 
preceding this circuit. 

Case B: V1 = V2 = Vi

Under this condition Fig. 1 reduces to a single input circuit 
shown in Fig. 3. This configuration has appeared in several 
papers, for example [2]-[14].
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Figure 3. A single input circuit for case B.

Equation (1) gives 

		 (6)

This can also be written as 

	 (7)

Examination of (8) and (9) shows that (-m) and N blocks can 
be interchanged. Thus, the alternative circuit of Fig. 3 is shown 
in Fig. 4. 

Although the two circuits of Figs. 3 and 4 have the same VTF, 
the latter one has a finite output impedance. Therefore, it will 
require a buffer when connected to some other circuit. We will 
not consider this circuit any more.

Figure 4.  Alternative circuit.

If the input and ground terminals of N are interchanged 
(complementary transformation [15]-[18]), the transfer function 
becomes

	 (8)

Thus, the GC has become  

III. GC ADJUSTMENT FACILITY
Let us modify the circuit of Fig. 3 as shown in Fig. 5. The VTF 
of the modified circuit is 

(9)

	 (10)

Comparing  (9) and (10), we get

	 (11)

(12)

Figure 5. Circuit with GC adjustment facility.

Thus, the GC has become K times larger than that of the circuit 
of Fig. 3. Note that Ra and Rb values are independent of any 
of the parameters of N. Thus, the technique is applicable to 
any N. The circuit with Rb = ∞ (when K = 1), will be termed 
as basic circuit.

Demonstration of the technique

A)  Difference Amplifier

Let GC of the conventional difference amplifier of Fig. 2 be K. 
Then the total resistance is 

GAIN ADJUSTMENT IN ACTIVE  CIRCUITS
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	 (13)

Figure 6. Modified difference amplifier

The modified difference amplifier is shown in Fig.  6. The total 
resistance is

RM = 3R+KR+KR/(K-1).                                 	 (14) 

RM ≤ RC when

3R+KR+KR/(K-1)≤(2+2K)R	 	 (15)

→K2-3K+1

i.e., when 1 ≤ K ≤ 2.6. Let the desired K be 3. Then Ra = 3R, 
Rb = (3/2)R. RC = 8R, RM = 7.5R.

B) Active Bridge

VTF of the active bridge circuit [20] shown in Fig. 7 is

	 (16)

Figure 7. An active bridge.

The output voltage will be zero when

	 (17)

This is the well-known null condition for a conventional 
Wheatstone bridge [21]. However, the active bridge has the 
following features. 
(i)	 It has a common ground between the input and output.
(ii)	 It has zero output resistance and therefore can be loaded 

at the output without any buffer.

Now if we modify the circuit as shown in Fig. 8, the transfer 
function becomes

	 (18)

Thus, the output voltage becomes K times larger. Hence, we will 
be able to detect the null point more accurately in the presence 
of noise. While we require an instrumentation amplifier to 
enhance the output voltage of the Wheatstone Bridge. 

Figure 8. Modified active bridge.

C)  First order all-pass filter

Let us consider the first order all-pass circuit shown in Fig. 9.

Figure  9. First order all-pass filter.

Thus, the GC has become K times of that of the basic circuit. 
For a GC of 4, Ra = 4R1, Rb = (4/3) R1.  can be realized by 4 
resistors of value R in series and  can be realized by one resistor 
R in series with 3 resistors of value R in parallel. Also, R/2 can 
be realized by two resistors of value R in parallel Thus, the 
total number of resistors required is NR = 11each of values R.
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Total resistance is 

	

Whereas the circuit of [1] using FGDA of Fig. 2, both NR and 
RT equal 14R, in addition to two buffers when the GC of the 
difference amplifier A is 4. 

The relation for GC given by  (11) of [1] is in error. The correct 
values is 

		  (20)

Thus, K can be varied between ¼ and 1/3 when A is 1 and ∞, 
respectively. For the latter value of K, GC is fixed at 1/3 (not 
3) and cannot be varied. Also, in [19], (when R1 = R2 = R and 
R3 = R/2, so that it gives the same transfer function as given 
by (19), the GC is fixed at 1 and cannot be varied. Thus, from 
the fabrication point in discrete or integrated forms, proposed 
circuit is better.

It is not fare for the author of [1] to compare the circuit of Fig. 
6 with that of [19] as they are having different VTFs.

If the input and ground terminals of the basic circuit of Fig. 7 
(K = 1) are interchanged, we get the complementary network 
that has VTF [17]-[20] 

			   (21)

D)  Second order all pass filters

Consider the second order passive circuits shown in Fig. 10. 

(c)

Figure 10. Circuits for N for case D..

These circuits have the same transfer function (with R1 = R2 = 
R and C1 = C2 = C) 

(22)

Then the overall transfer function becomes

(23)

Then, the GC has become K times larger than that of the basic 
circuit. This is a band reject filter (BRF) when m = 2 and all-
pass filter when m = 5.

If we interchange the input and ground terminals of N, the new 
transfer function will be [17] - [20]

	 (24)

It is an APF filter when m = 5 and BRF when m = 2. 

If the input and ground terminals of the basic circuit in 
Fig. 3 with K = 1 and N is any of the circuits of Fig. 7, are 
interchanged, we get the complementary VTF [15]- [18] 

	 (25)

IV. CIRCUITS WITH OTHER DEVICES
In sections 2 and 3, we have used the following terminal 
characteristics of the OA given in Table 1. 
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	 (26)

	 (27)

TABLE 1 -- VARIOUS DEVICES, THEIR SYMBOLS AND 
CHARACTERISTICS

The OA in Fig. 1 is replaced by other active devices as shown 
in Fig 12. In Fig. 11(a), FTFN satisfy (26) and (27). Therefore, 
OA can directly be replaced by FTFN. Output is taken at z 
terminal which follows the voltage of w terminal, but offers 
zero output impedance. In Fig. 11(b), CCII satisfies (26), but 
does not (27). The current at x terminal is not 0 but equal to Iz, 
the current through the feedback resistance is halved. Hence, 
to give the same output voltage, the feedback resistance is 
doubled. In Fig. 11(c), CFA satisfies (26) and Iy = 0, but Ix ≠ 
0. To force Ix = 0, Iz is made 0 by keeping the z terminal open. 

Figure 11. Circuits with other devices.

Circuits of Figs. 11(a) and (b) have appeared in [22]-[23].

V. CONCLUSION
Starting from a general dual input active circuit, we have 
obtained a difference amplifier and a single input circuit. We 
have introduced the gain constant adjustment facility by adding 
one resistor. The technique is demonstrated with difference 
amplifier, an active bridge, and first and second order all pass 
filters. It is pointed out that relation for GC of Dutta Roy is 
not correct. Therefore, all his claims are not true based on this 
relation. The proposed filters are better suited for fabrication 
both in discrete and integrated forms.
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