
48

Abstract— This article discusses the use of machine learning
(ML) in software engineering (SE) at various phases. The SDLC
organises software development. Goal is to examine Examine
software engineering machine learning applications. Study clas-
sifies machine learning I examined machine learning methods
for software engineering projects. Evaluation, layout, execution,
evaluation, and maintenance are every aspect that collectively
make up the software development life cycle. Supervised and
unsupervised machine learning are used to determine software
requirements, design patterns, and code implementation, gen-
eration, and testing.

Keywords—Machine Learning, SDLC, Testing, component,

I. INTRoDuCTIoN
Hot perspectives encompass artificial intelligence (AI),
machine learning (mL), data mining, and big data analytics.
These fields are crucial to scientific communication.
Symbolic of their influence on modern culture. Machine
learning develops programmes that improve with experience.
machine learning algorithms work well. It is useful in many
fields. The machine learning field has advanced. Used
for feature extraction and testing in software engineering.
software developers could better understand machine
learning methodologies and help users choose and execute
the best methods by evaluating assumptions and assurances.
Future software engineering (se) methods and technologies
will require more automation to adapt to changing software
development methodologies. the system is lightweight,
adaptable, and scalable to meet developers’ rising needs and
boost productivity. text from the user

Increasing reliance on machine learning (mL) applications
demands advanced engineering techniques to create a strong,
resilient system that can adapt to future requirements. the
growing dependence stresses the need for advanced and
organised engineering procedures.

software is essential to most systems and has become part
of daily life. with open-source technology, networked
devices, and automated processes, software systems are
getting increasingly complex [1]. software projects also
involve people with different skills, which makes them more
complicated.

software faults are common since people write it. thus, errors
are unavoidable while using commercial software, especially
as complexity increases [2]. these inaccuracies increase with
number [3]. automation of the software Development Life
cycle (sDLc) utilising machine learning can help solve these
problems.

II. BACkGRouND AND RELATED WoRkS
the link between software engineering (se) and machine
learning (mL) has long been studied [1-3]. some studies
highlight the discrepancy between software engineering
(se) and mL (machine Learning) communities, mainly due to
their different specialisations. The ML community focuses on
algorithm efficacy. The SE community develops and imple-
ments software-intensive systems [4]. However, cooperation
between these societies benefits both. “Experts in software
engineering do mL system development duties. Include de-
signing, creating, and managing machine Learning-assistance
software. Researchers in this field seek to identify design dif-
ferences between machine learning systems and traditional
software to provide new methods and resources to address
these disparities. However, “ML for SE” modifies AI tech-
nology to solve software engineering problems. software
defect prediction, code smell detection, reusability measure-
ment, forecasting, and expense estimation. researchers use
machine learning models to improve software engineering
utilising source code, requirement specifications, and test cas-
es. software engineering is about creating, using, and main-
taining software development concepts. This field employs
structured methods to analyse, create, execute, and manage
information systems. Software development requires effec-
tive planning and organisation to ensure timely delivery and
high-quality software.

software development requires the sDLc. “software de-
velopment” encompasses the full software creation process.
“sDLc” stands for software Development Life cycle, which
includes agile, waterfall, Devops, V-model, and Iterative.
software developers use Dynamic system Development
model, extreme programming, and Feature Driven. Joint
application Development, spiral, and rapid application
Development are common software development methods.
requirements analysis and design are common sDLc pro-

GLIMPSE-Journal of Computer Science •Vol.3(1),JANUARY-JUNE2024,pp. 48-51

 macHINe LearNINg metHoDs IN
soFtware eNgINeerINg – reVIew

vikas
Computer Science & Engineering, Ajay Kumar Garg Engineering College, Ghaziabad, UP

 vikas@akgec.ac.in

49

cesses. Execution, verification, maintenance. Stages together
determine course. software development ensures software
programme implementation and functionality [5]. software
engineering has moved from waterfall to agile. the waterfall
model is linear and sequential, with each phase depending on
the previous ones.

 III. MACHINE LEARNING IN SoFTWARE
ENGINEERING

analysis of machine learning implementation is the main
goal. Developing and evaluating machine learning (mL)
skills during the software development life cycle (sDLc).
we have developed guiding research queries to achieve this
purpose. throughout the inquiry:
research question 1 (rq1): what software programme cat-
egories exist? Does modern software development acknowl-
edge or document it?
rq2: which machine learning methods were used in this soft-
ware development phase?
rq3: How are machine learning-based methods evaluated?

the entire software development process relies on require-
ment engineering (re). prioritisation and requirement identi-
fication are key to RE [6].
RQ1: Machine learning techniques define functional and non-
functional software requirements [7-11].
research question 2: text analysis can be done using many
machine learning methods. processing algorithms fall into
two categories: supervised learning machine learning algo-
rithms are divided into supervised and unsupervised catego-
ries. semi-supervised learning (ssL) combines supervised
and unsupervised classification.

A. Software design
this is the most innovative era of software development. It
involves strategic planning and problem-solving for a circum-
stance or activity. software developers and designers outline
a repair strategy. the software Design Document (sDD) is
created at this stage. software design is complicated. How-
ever, software design patterns improve this phase’s organi-
sation. standardised software design patterns solve software
architecture problems. mL-based approaches can discover
adapter and strategy design patterns [13]. a number of studies
investigated five different design patterns, including the Sin-
gleton, adapter, composite, Decorator, and Factory method
configurations. [14]. Agile SDLC divides the system’s ar-
chitecture into components. thus, software component selec-
tion is essential to design. multiple research reveal a novel
machine learning approach [15] that can help categorise reus-
able software components. experimental machine learning
models used in the study are below. the chosen study uses
Naive Bayes, logistic regression, random forest, neural net-
works, decision trees, support vector machines with various
kernel functions, and decision trees.

GLIMPSE-Journal of Computer Science •Vol.3(1),JANUARY-JUNE2024,pp. 48-
51

B. Software construction
The findings show that machine learning models generate
code [16, 17]. modifying code and creating documenta-
tion [18, 19]. the selected papers demonstrate that many
machine learning methods can be used for code generation.
most selected study uses recurrent and convolutional Neural
Networks [16, 20]. advanced conversational aI system chat-
gpt uses guidance and reinforcement learning. mL models
make mistakes on complex and unforeseen problems.

C. Software testing
according to Iso/Iec 24765, 2006, testing involves running
a system under certain settings, documenting the results, and
assessing a specific part of the system [21]. Software devel-
opment requires testing. every computer programme the
product must go through several steps before being used. ex-
perimentation helps us spot emerging difficulties. Testing
allows developers to evaluate quality requirements, discover
difficulties, and find proactive solutions. Machine learning
(mL) in numerous software programmes for experimentation
is gaining popularity [3]. the statistical software testing pro-
cess included the utilisation of machine learning, specifically
for the purposes of performance evaluation, testing, and the
production of test cases. the model-free reinforcement learn-
ing technique known as q-learning was utilised in testing en-
vironments that were quite complicated. software testing is
automated using model-Inference-Driven testing (mINtest).

D. Software maintenance
software maintenance involves improving, modifying,
and correcting software for security, functionality, and
performance. IEEE STD 1219-15193 defines software
maintenance as changing a software product after delivery
to fix bugs and improve functionality. The Systems
Development Life cycle (sDLc) concludes with product
performance improvements and environmental adaptation.
this stage of the sDLc distributes software to end users, who
must maintain and operate it according to industry standards.
At this point, machine learning is used to find software flaws.
there are more capabilities that are included in maintenance
software. these features include refactoring, which is the
process of replacing obsolete components or algorithms with
more advanced ones, updating data naming standards, and
enhancing the readability of code. several articles discuss
reworking model development, including: the study “a
machine learning approach to software model refactoring”
offered an AI-driven method to early analyse and improve
object-oriented software quality. the inquiry shows many
machine learning methods at this level. Deep learning using
convolutional Neural Networks (cNN) is designed to identify
and classify duplicate or similar bug reports. three supervised
machine learning methods—logistic regression, Naive Bayes,
and decision tree—predict software defects using historical
data. model refactoring uses an advanced neural network

50

[7] J. zou, L. xu, w. guo, m. yan, D. yang, x. zhang. which
non-functional requirements do developers focuson? an em-
pirical study on stack overflow using topic analysis, in 2015
Ieee/acm 12th working conference on mining software re-
positories, 16-17 may 2015, Florence, Italy, 446-449 (2015).
doi: 10.1109/msr.2015.60

[8] a. ahmad, k. Li, c. Feng, t. sun. an empirical study on how
iOS developers report quality Aspects on stack overflow. In-
ternational Journal of machine Learning and computing, 8(5),
501-506 (2018).

[9] c. treude, o. Barzilay, m. a. storey. How do programmers
ask and answer questions on the web? Nier track, in 2011 33rd
International conference on software engineering (Icse), 21-
28 may 2011, waikiki, Honolulu, HI, usa, 804-807 (2011).
doi: 10.1145/1985793.1985907

[10] J. zou, L. xu, m. yang, x. zhang, D. yang. towards compre-
hending the non-functional requirements through developers’
eyes: An exploration of stack overflow using topic analysis.
Information and software technology, 84, 19-32 (2017). doi:
10.1016/j.infsof.2016.12.003

[11] ahmad, c. Feng, k. Li, s. m. asim, t. sun. toward empirical-
ly investigating non-functional requirements of ios develop-
ers on stack overflow. IEEE Access, 7, 61145- 61169 (2019).
doi: 10.1109/access.2019.2914429

[12] H. . yin, D. pfahl. a preliminary study on the suitability of stack
overflow for open innovation in requirements engineering, in
proceedings of the 3rd international conference on commu-
nication and information processing, 24-26 November 2017,
tokyo, Japan, 45-49 (2017). doi: 10.1145/3162957.3162965

[13] r. Ferenc, a. Beszedes, L. Fulop, J. Lele. Design pattern
mining enhanced by machine learning, in 21st Ieee interna-
tional conference on software maintenance (Icsm’05), 26- 29
september 2005, Budapest, Hungary, 295-304 (2005). doi:
10.1109/Icsm.2005.40

[14] m. zanoni, F. a. Fontana, F. stella. on applying machine
learning techniques for design pattern detection. Journal of
systems and software, 103, 102-117 (2015). doi: 10.1016/j.
jss.2015.01.037

[15] r. selvarani, p. mangayarkarasi. a dynamic optimization
technique for redesigning oo software for reusability. acm
sIgsoFt software engineering Notes, 40(2), 1-6 (2015). doi:
10.1145/2735399.2735415

[16] r. agashe, s. Iyer, L. zettlemoyer. Juice: a large scale dis-
tantly supervised dataset for open domain context-based code
generation (2019). doi: 10.48550/arxiv.1910.02216

[17] e. c. shin, m. allamanis, m. Brockschmidt, a. polozov.
program synthesis and semantic parsing with learned code
idioms, in 33rd conference on neural information processing
systems (NeurIps 2019), Vancouver, canada (2019).

[18] a. takahashi, H. shiina, N. kobayashi. automatic genera-
tion of program comments based on problem statements for
computational thinking, in 2019 8th International congress
on advanced applied informatics (IIaI-aaI), 07-11 July
2019, toyama, Japan, 629-634 (2019). doi: 10.1109/IIaI-
aaI.2019.00132

[19] y. shido, y. kobayashi, a. yamamoto, a. miyamoto, t. mat-
sumura. automatic source code summarization with extended
tree-lstm, in 2019 International joint conference on neural
networks (IJcNN), 14-19 July 2019, Budapest, Hungary, 1-8
(2019). doi: 10.1109/IJcNN.2019.8851751

GLIMPSE-Journal of Computer Science •Vol.3(1),JANUARY-JUNE2024,pp. 48-
51

to find functional errors in object-oriented software UML
models [48]. the study advises using data science tools to
understand multidimensional software design. the data is
used to extrapolate and understand intricate architectural
relationships.

Iv. CoNCLuSIoN
The application of machine learning in the field of software
engineering has been the subject of substantial efforts under-
taken by a number of writers. their primary objective was
to deliver unbiased evaluations. However, it can involve a
degree of subjectivity. moreover, it is important to highlight
that this research study showcases the practicality of a Various
machine learning techniques are applied throughout different
stages of the software development life cycle (sDLc). the
fact that successfully integrating machine learning algorithms
into the software development process is a task that is ex-
tremely demanding is a significant discovery that has consid-
erable implications. to summarise, this study highlights the
necessity of efficient cooperation among researchers for the
purpose of addressing the issues that are now being faced in
the disciplines of machine learning (mL) and software engi-
neering (se).

REFERENCES
[1] L. e. Lwakatare, a. raj, J. Bosch, H. H. olsson, I. crnkovic.

 a taxonomy of software engineering challenges for machine
 learning systems: an empirical investigation, in p. kruchten,
 s. Fraser, F. coallier (eds.), agile processes in software engi-
 neering and extreme programming. xp 2019. Lecture notes
 in business information processing, Vol. 355, springer, cham,
 227-243 (2019). doi: 10.1007/978-3-030-19034-7_14
[2] m. shehab, L. abualigah, m. I. Jarrah, o. a. alomari, m.

S. Daoud MS. Artificial intelligence in software engineer-
ing and inverse. International Journal of computer Inte-
grated manufacturing, 33(10-11), 1129-1144 (2020). doi:
10.1080/0951192x.2020.1780320

[3] V. H. Durelli, r. s. Durelli, s. s. Borges, a. t. endo, m. m.
eler, D. r. Dias, m. p. guimaraes. machine learning applied
to software testing: a systematic mapping study. Ieee trans-
actions on reliability, 68(3), 1189-1212 (2019). doi: 10.1109/
tr.2019.2892517

[4] F. khomh, B. adams, J. cheng, m. Fokaefs, g. antoniol.
software engineering for machine-learning applications: the
road ahead. Ieee software, 35(5), 81-84 (2018). doi: 10.1109/
ms.2018.3571224

[5] N. maneerat, p. muenchaisri. Bad-smell prediction from soft-
ware design model using machine learning techniques, in
2011 eighth international joint conference on computer sci-
ence and software engineering (Jcsse), 11-13 may 2011,
Nakhonpathom, thailand, 331-336 (2011). doi: 10.1109/Jc-
sse.2011.5930143

[6] P. Talele, R. Phalnikar. Software requirements classification
 and prioritisation using machine learning, in a. Joshi, m.
 khosravy, N. gupta (eds.), machine learning for predictive
 analysis. Lecture notes in networks and systems, Vol. 141,
 springer, singapore, 257-267 (2021). doi: 10.1007/978-981-
 15-7106-0_26

51

[20] z. zhu, z. xue, z. yuan. automatic graphics program genera-
tion using attention-based hierarchical decoder, in c. Jawahar,
H. Li, g. mori, k. schindler (eds.), computer vision – accV
2018. accV 2018. Lecture notes in computer science, Vol.
11366, springer, cham, 181-196 (2019). doi: 10.1007/978-3-
030-20876-9_12

[21] H. alaqail, s. ahmed. overview of software testing standard
Iso/Iec/Ieee 29119. nternational Journal of computer sci-
ence and Network securit, 18(2), 112-116 (2018).

Mr. vikas is working as assistant professor
in ajay kumar garg engineering college.
He is currently pursuing his ph.D. from Birla
Institute of technology, mesra, ranchi. He
is having more than 11 years of experience
in teaching field and 1.2 years of experience
in It industry. His area of interest is in
Networking and machine Learning.

GLIMPSE-Journal of Computer Science •Vol.3(1),JANUARY-JUNE2024,pp. 48-51

