Chain-Necklace Diagrams with the Sum of Two Consecutive Numbers a Perfect Cube

Dr. Tejmal Rathore, SMIEEE, FIETE
803 Country Park, Dattapada Road, Borivali (East), Mumbai 400066, Maharashtra, India
tsrathore@ee.iitb.ac.in

Abstract

In this paper, we have used Rathore's method for arranging numbers $1-n$ such that the sum of two consecutive numbers is a perfect cube. The full chain is obtained for $\boldsymbol{n}=\mathbf{3 0 5}$ and full necklace is obtained for $\boldsymbol{n}=473$. Larger the value of \boldsymbol{n}, it takes more effort and time to find out chain-necklace diagram.

Keywords: Magic circle, Chain, Necklace, Trio

I. INTRODUCTION

AS far as we know, there is no published paper on the topic arranging the numbers on a circle such that the sum of two neighbouring numbers is a perfect square or cube. For the case of square, a circle of 32 is widely circulated [1]. There are chats on a group of mathematicians and scattered results are available. Some results are available in these chats; however, no proof is openly available. It is mentioned that they have developed the method using the graph theory and/or computer programs; but not available in the open literature $[1,2]$.

We use the terms: Chain: a string of numbers satisfying certain criterion. Full chain: When the chain contains all the numbers. Necklace: When the two ends of the chain are joined. Full necklace: When the necklace has all the numbers.

Case A: For the sum as perfect square

1. Number 15 is the minimal for a full chain.
2. Number 32 is the minimal for a full necklace.
3. Numbers 32 and 33 have the unique full necklaces.
4. Numbers above 33 have multiple full necklaces.
5. The number of full necklaces increases rapidly as the number increases.

Case B: For the sum as a perfect cube

1. Number 305 is minimal for a full chain.
2. Number 388 claimed to be minimal; but it is not true.
3. Number 473 is minimal for full necklace.
4. The number of full necklaces increases rapidly as the number increases.

Case A has been dealt in detail in [3]. In this paper, Rathore's trio-based method [3] is extended to case B. It is simple and systematic. Unlike graph theory, it can be used even by a school child. Using the method, we prove all the above properties for case B.

A trio (T) is a set of 3 numbers (a, b, c) such that $a+b$ and $b+c$ satisfy some given criterion and b has no other choice except a and c. For example, in case $\mathrm{A}(\mathrm{B})$ criterion is perfect square (cube).

Some of the properties which are useful are summarized for easy implementation of the method.

1) If a $\mathrm{T}(a, b, c)$ is such that $a+c$ is also a perfect square, then (a, c, b) is also a T. It means b and c can be interchanged.
2) If two strings (Ss) are $\{a, b, c, d, \ldots x, y, z\}$ and $\{c, d, \ldots, x, y, z\}$, then latter can be ignored.
3) Merging property: Two Ss $\{a, b, \ldots, p, q, v\}$ and $\{p, q, v, . ., w, x, y, z\}$ can be merged in to a single $\mathrm{S}\{a, b, \ldots$, $p, q, v, . . w, x, y, z\}$.
4) Mixing property: If two Ss are $\{a, b, c, d, \ldots, h\}$ and $\{i, j, \ldots$ $w, x, y, z\}$ are such that $h+i$ is a perfect cube, they can be replaced by a single $\mathrm{S}\{a, b, c, d, \ldots, h, i, j, \ldots, w, x, y, z\}$.

Properties 2 and 3 will be helpful in eliminating the common numbers present between the two Ss. Property 4 will be useful in interconnecting the Ss.

II. THE METHOD

The Rathore's trio-based method [1] is extended to find the chains and necklaces when the sum of two consecutive numbers is a perfect cube. The method consists of the following steps.

1) To prepare a table for given n for the choices of various natural numbers.
2) To prepare a list of all the Ts from Table 1.
3) To eliminate the common numbers from various Ts using the properties 2 and 3. This will result in several Ss.
4) To list the left-out numbers (LONs) out of Ts.
5) To insert the LONs around the two ends of the strings such that the criterion laid down should not be violated.
6) To interconnect the various Ss , such that the criterion laid down should not be violated, using property 4.

To demonstrate the working of the method, we take specific values of $n=296,300,305,386$ and 473.

Table 1-- Choices FOR NUMBERS 1-296

$1-7,26,63,124,215$,	$26-1,38,99,190$	$51-13,74,165,292$	$76-49,140,267$	$101-24,115,242$
$2-6,25,62,123,214$	$27-37,98,189$	$52-12,73,164,291$	$77-48,139,266$	$102-23,114,241$
$3-5,24,61,122,213$	$28-36,97,188$	$53-11,72,163,290$	$78-47,138,265$	$103-22,113,240$
$4-23,60,121,212$	$29-35,96,187$	$54-10,162,289$	$79-46,137,264$	$104-21,112,239$
$5-3,22,59,120,211$	$30-34,95,186$	$55-9,70,161,288$	$80-45,136,263$	$105-20,111,238$
$6-2,21,58,119,210$	$31-33,94,185$	$56-8,69,160,287$	$81-44,135,262$	$106-19,110,237$
$7-1,20,57,118,209$	$32-93,184$	$57-7,68,159,286$	$82-43,134,261$	$107-18,109,236$
$8-19,56,117,208$	$33-31,92,183$	$58-6,67,158,285$	$83-42,133,260$	$108-17,108,235$
$9-18,55,116,207$	$34-30,91,182$	$59-5,66,157,284$	$84-41,132,259$	$109-16,107,234$
$10-17,54,115,206$	$35-29,90,181$	$60-4,65,156,283$	$85-40,131,258$	$110-15,106,233$
$11-16,53,114,205$	$36-28,89,180$	$61-3,64,155,282$	$86-39,130,257$	$111-14,105,232$
$12-15,52,113,204$	$37-27,88,179$	$62-2,63,154,281$	$87-38,129,256$	$112-13,104,231$
$13-14,51,112,203$	$38-26,87,178$	$63-1,62,153,280$	$88-37,128,255$	$113-12,103,230$
$14-13,50,111,202$	$39-25,86,177$	$64-61,152,279$	$89-36,127,254$	$114-11,102,229$
$15-12,49,110,201$	$40-24,85,176$,	$65-60,151,278$	$90-35,126,253$	$115-10,101,228$
$16-11,48,109,200$	$41-23,84,175$,	$66-59,150,277$	$91-34,125,252$	$116-9,100,227$
$17-10,47,108,199$	$42-22,83,174$,	$67-58,149,276$	$92-33,124,251$	$117-8,99,226$
$18-9,46,107,198$	$43-21,82,173$,	$68-57,148,275$	$93-32,123,250$	$118-7,98,225$
$19-8,45,106,197$	$44-20,81,172$,	$69-56,147,274$	$94-31,122,249$	$119-6,97,224$
$20-7,44,105,196$	$45-19,80,171$,	$70-55,146,273$	$95-30,121,248$	$120-5,96,223$
$21-6,43,104,195$	$46-18,79,170$,	$71-54,145,272$	$96-29,120,247$	$121-4,95,222$
$22-5,42,103,194$	$47-17,78,169,296$	$72-53,144,271$	$97-28,119,246$	$122-3,94,221$
$23-4,41,102,193$	$48-16,77,168,295$	$73-52,143,270$	$98-27,118,245$	$123-2,93,220$
$24-3,40,101,192$	$49-15,76,167,294$	$74-51,142,269$	$99-26,117,244$	$124-1,92,219$
$25-2,39,100,191$	$50-14,75,166,293$	$75-50,141,268$	$100-25,116,243$	$125-91,218$
$126-90217$	$151-693$	192	226117,286	1

$126-90,217$	$151-65,192$	$176-40,167$	$201-15,142$	$226-117,286$	$251-92,261$	$276-67,236$
$127-89,216$	$152-64,191$	$177-39,166$	$202-14,141$	$227-116,285$	$252-91,260$	$277-66,235$
$128-88,215$	$153-63,190$	$178-38,165$	$203-13,140$	$228-115,284$	$253-90,259$	$278-65,234$
$129-87,214$	$154-62,189$	$179-37,164$	$204-12,139$	$229-114,283$	$254-89,258$	$279-64,233$
$130-86,213$	$155-61,188$	$180-36,163$	$205-11,138$	$230-113,282$	$255-88,257$	$280-63,232$
$131-85,212$	$156-60,187$	$181-35,162$	$206-10,137$	$231-112,281$	$256-87$	$281-62,231$
$132-84,211$	$157-59,186$	$182-34,161$	$207-9,136$	$232-111,280$	$257-86,255$	$282-61,230$
$133-83,210$	$158-58,185$	$183-33,160$	$208-8,135$	$233-110,279$	$258-85,254$	$283-60,229$
$134-82,209$	$159-57,184$	$184-32,159$	$209-7,134$,	$234-109,278$	$259-84,253$	$284-59-228$
$135-81,208$	$160-56,183$	$185-31,158$	$210-6,133$,	$235-108,277$	$260-83,252$	$285-58,227$
$136-80,207$	$161-55,182$	$186-30,157$	$211-5,132$,	$236-107,276$	$261-82,251$	$286-57,226$
$137-79,206$	$162-54,181$	$187-29,156$	$212-4,131$	$237-106,275$	$262-81,250$	$287-56,225$
$138-78,205$	$163-53,180$	$188-28,155$	$213-3,130$	$238-105,274$	$263-80,249$	$288-55,224$
$139-77,204$	$164-52,179$	$189-27,154$	$214-2,129$	$239-104,273$	$264-79,248$	$289-54,223$
$140-76,203$	$165-51,178$	$190-26,153$	$215-1,128$	$240-103,272$	$265-78,247$	$290-53,222$
$141-75,202$	$166-50,177$	$191-25,152$	$216-127,296$	$241-102,271$	$266-77,246$	$291-52,221$
$142-74,201$	$167-49,176$	$192-24,151$	$217-126,295$	$242-101,270$	$267-76,245$	$292-51,220$
$143-73,200$	$168-48,175$	$193-23,150$	$218-125,294$	$243-100,269$	$268-75,244$	$293-50,219$
$144-72,199$	$169-47,174$	$194-22,149$	$219-124,293$	$244-99.268$	$269-74,243$	$294-49,218$

AKGEC INTERNATIONAL JOURNAL OF TECHNOLOGY, Vol. 13, No. 2

$145-71,198$	$170-46,173$	$195-21,148$	$220-123,292$	$245-98,267$	$270-73,242$	$295-48,217$
$146-70,197$	$171-45,172$	$196-20,147$	$221-122,291$	$246-97,266$	$271-72,241$	$296-47,216$
$147-69,196$	$172-44,171$	$197-19,146$	$222-121,290$	$247-96,265$	$272-71,240$	
$148-68,195$	$173-43,170$	$198-18,145$	$223-120,289$	$248-95,264$	$273-70,239$	
$149-67,194$	$174-42,169$	$199-17,144$	$224-119,288$	$249-94,263$	$274-69,238$	
$150-66,193$	$175-41,168$	$200-16,143$	$225-118,287$	$250-93,262$	$275-68,237$	

TABLE 2 -- OPTIONS AND REMARKS FOR VARIOUS VALUES OF n

\boldsymbol{n}	options	Remarks
<184	There is only one option 93 for 32	No necklace, may be single or multiple chains
<218	There is only one option 91 for 125	No necklace, may be single or multiple chains
<296	There is only one option 127 for 216	No necklace, may be single or multiple chains
<473	There is only one option 256 for 87	No necklace, may be single or multiple chains
473	Every number has more than 1 options	May be single or multiple Necklaces

(A) $n=300$

List of Ts

$(43,300,212)$	$(71,272,240)$	$(99,244,268)$	$(127,216,296)$	$(37,179,164)$	$(65,151,192)$
$(44,299,213)$	$(72,271,241)$	$(100,243,269)$	$(10,206,137)$,	$(38,178,165)$	$(66,150,193)$
$(45,298,214)$	$(73,270,242)$	$(101,242,270)$	$(11,205,138)$	$(39,177,166)$	$(67,149,194)$
$(46,297,215)$	$(74,269,243)$,	$(102,241,271)$	$(12,204,139)$	$(40,176,167)$	$(68,148,195)$
$(47,296,216)$	$(75,268,244)$	$(103,240,272)$	$(13,203,140)$	$(41,175,168)$	$(69,147,196)$
$(48,295,217)$	$(76,267,245)$	$(104,239,273)$	$(14,202,141)$	$(42,174,169)$	$(70,146,197)$
$(49,294,218)$	$(77,266,246)$	$(105,238,274)$	$(15,201,142)$	$(43,173,170)$,	$(71,145,198)$
$(50,293,219)$	$(78,265,247)$	$(106,237,275)$	$(16,200,143)$,	$(44,172,171)$	$(72,144,199)$
$(51,292,220)$	$(79,264,248)$	$(107,236,276)$	$(17,199,144)$	$(45,171,172)$	$(73,143,200)$
$(52,291,221)$	$(80,263,249)$	$(108,235,277)$	$(18,198,145)$	$(46,170,173)$	$(74,142,201)$
$(53,290,222)$	$(81,262,250)$	$(109,234,278)$	$(19,197,146)$	$(47,169,174)$	$(75,141,202)$
$(54,289,223)$,	$(82,261,251)$	$(110,233,279)$	$(20,196,147)$	$(48,168,175)$	$(76,140,203)$
$(55,288,224)$	$(83,260,252)$	$(111,232,280)$	$(21,195,148)$	$(49,167,176)$	$(77,139,204)$
$(56,287,225)$	$(84,259,253)$	$(112,231,281)$	$(22,194,149)$	$(50,166,177)$	$(78,138,205)$
$(57,286,226)$	$(85,258,254)$	$(113,230,282)$	$(23,193,150)$	$(51,165,178)$	$(79,137,206)$
$(58,285,227)$	$(86,257,255)$	$(114,229,283)$	$(24,192,151)$	$(52,164,179)$	$(80,136,207)$
$(59,284,228)$,	$(87,256)$	$(115,228,284)$	$(25,191,152)$	$(53,163,180)$	$(81,135,208)$
$(60,283,229)$	$(88,255,257)$	$(116,227,285)$	$(26,190,153)$	$(54,162,181)$	$(82,134,209)$
$(61,282,230)$	$(89,254,258)$	$(117,226,286)$	$(27,189,154)$	$(55,161,182)$	$(83,133,210)$
$(62,281,231)$	$(90,253,259)$	$(118,225,287)$	$(28,188,155)$	(56,160,183,	$(84,132,211)$
$(63,280,232)$	$(91,252,260)$	$(119,224,288)$	$(29,187,156)$	$(57,159,184)$	$(85,131,212)$
$(64,279,233)$	$(92,251,261)$	$(120,223,289)$	(30,186,157,	$(58,158,185)$	$(86,130,213)$
$(65,278,234)$,	$(93,250,262)$	$(121,222,290)$	$(31,185,158)$	$(59,157,186)$	$(87,129,214)$
$(66,277,235)$	$(94,249,263)$	$(122,221,291)$	$(32,184,159)$	$(60,156,187)$	$(88,128,215)$
$(67,276,236)$	$(95,248,264)$	$(123,220,292)$	$(33,183,160)$	$(61,155,188)$	$(89,127,216)$
$(68,275,237)$	$(96,247,265)$	$(124,219,293)$	$(34,182,161)$	$(62,154,189)$	$(90,126,217)$
$(69,274,238)$	$(97,246,266)$	$(125,218,294)$	$(35,181,162)$	$(63,153,190)$	$(91,125,218)$
$(70,273,239)$	$(98,245,267)$	$(126,217,295)$	$(36,180,163)$	$(64,152,191)$	$(93,32,184)$

There is a single choice 87 for 256 . Hence it will not yield a necklace.
Eliminating the common numbers from Ts , we get
(86,257,255,88,128,215,297,46,170,173,43,300,212,131,
$85,258,254,89,127,216,296,87,256)$
(44,172,171,45,298,214,129,87)
$(42,174,169,47)$
$(41,175,168,48,295,217,126,90,253,259,84,132,211)$
$(40,176,167,49,294,218,125,91,252,260,83,133,210)$
$(39,177,166,50,293,219,124,92,251,261,82,134,209)$
$(38,178,165,51,292,220,123,93,250,262,81,135,208)$
$(37,179,164,52,291,221,122,94,249,263,80,136,207)$
$(36,180,163,53,290,222,121)$
$(35,181,162,54,289,223,120)$
$(34,182,161,55,288,224,119)$
$(33,183,160,56,287,225,118)$
$(93,32,184,159,57,286,226,117)$
$(31,185,158,58,285,227,116)$
$(30,186,157,59,284,228,115)$
$(29,187,156,60,283,229,114)$
$(28,188,155,61,282,230,113)$
$(27,189,154,62,281,231,112)$
$(26,190,153,63,280,232,111)$
$(25,191,152,64,279,233,110)$
$(24,192,151,65,278,234,109)$
$(23,193,150,66,277,235,108)$
$(22,194,149,67,276,236,107)$
$(21,195,148,68,275,237,106)$
$(20,196,147,69,274,238,105)$
$(19,197,146,70,273,239,104)$
$(18,198,145,71,272,240,103)$
$(17,199,144,72,271,241,102)$
$(16,200,143,73,270,242,101)$
$(15,201,142,74,269,243,100)$
$(14,202,141,75,268,244,99)$
$(13,203,140,76,267,245,98)$
$(12,204,139,77,266,246,97)$
$(11,205,138,78,265,247,96)$
$(10,206,137,79,264,248,95)$

Attaching the LONs around the various Ss, we get
$\{(213,130,86,257,255,88,128,215,297,46,170,173,43,300,212,131$, 85,258,
$254,89,127,216,296,87,129,214,298,45,171,172,44,299,213\}$
\{256\}
$\{(42,174,169,47)\}$
$\{(41,175,168,48,295,217,126,90,253,259,84,132,211)\}$
$\{(40,176,167,49,294,218,125,91,252,260,83,133,210)\}$
$\{(39,177,166,50,293,219,124,92,251,261,82,134,209)\}$
$\{(38,178,165,51,292,220,123,93,250,262,81,135,208)\}$
$\{(37,179,164,52,291,221,122,94,249,263,80,136,207)\}$
$\{(36,180,163,53,290,222,121)\}$
$\{(35,181,162,54,289,223,120)\}$
$\{(34,182,161,55,288,224,119)\}$
$\{(33,183,160,56,287,225,118)\}$
$\{(93,32,184,159,57,286,226,117)\}$
$\{(31,185,158,58,285,227,116)\}$
$\{(30,186,157,59,284,228,115)\}$
$\{(29,187,156,60,283,229,114)\}$
$\{(28,188,155,61,282,230,113)$
$\{(27,189,154,62,281,231,112)$
$\{1,(26,190,153,63,280,232,111)$
$\{2,(25,191,152,64,279,233,110)$
$\{3,(24,192,151,65,278,234,109)$
$\{4,(23,193,150,66,277,235,108)$
$\{5,(22,194,149,67,276,236,107)$
$\{6,(21,195,148,68,275,237,106)$
$\{(27,20,196,147,69,274,238,105)\}$
$\{8,(19,197,146,70,273,239,104)\}$
$\{9,(18,198,145,71,272,240,103)\}$
$\{(17,199,144,72,271,241,102)\}$
$\{(16,200,143,73,270,242,101)\}$
$\{(15,201,142,74,269,243,100)\}$
$\{(14,202,141,75,268,244,99)\}$
$\{(13,203,140,76,267,245,98)\}$
$\{(12,204,139,77,266,246,97)\}$
$\{(11,205,138,78,265,247,96)\}$
$\{(10,206,137,79,264,248,95)\}$

Interconnecting the Ss , we get

1) $\{(130,86,257,255,88,128,215,297,46,170,173,43,300,212,131,85,258,254,89,127,216,296),(47,169,174,42)\}$
2) $\{(108,235,277,66,150,193,23),(41,175,168,48,295,217,126,90,253,259,84,132,211), 5,(22,194,149,67,276$, $236,107),(109,234,278,65,151,192,24), 3,(213,299,44,172,171,45,298,214,129,87,256)\}$
3) $(40,176,167,49,294,218,125,91,252,260,83,133,210), 6,(21,195,148,68,275,237,106),(110,233,279,64,152$, 191,25),2\}
4) $\{(39,177,166,50,293,219,124,92,251,261,82,134,209,7,(20,196,147,69,274,238,105),(111,232,280,63,190,26),(38,178,165,51,292,2$ $20,123,93,250,262,81,135,208), 8,(19,197,146,70,273,239,104),(112,231,281,62$,
$154,189,27),(37,179,164,52,291,221,122,94,249,263,80,136,207), 9,(18,198,145,71,272,240,103),(113,230$, $282,61,155,188,28),(36,180,163,53,290,222,121), 95,248,264,79,137,206,10,17,199,144,72,271,241,102)$, $114,229,283,60,156,187,29),(35,181,162,54,289,223,120),(96,247,265,78,138,205,11),(16,200,143,73,270$, $242,101),(115,228,284,59,157,186,30),(34,182,161,55,288,224,119),(97,246,266,77,139,204,12),(15,201$, $142,74,269,243,100),(116,227,285,58,185,31),(33,183,160,56,287,225,118),(98,245,267,76,140,203,13), 14,202,141,75,268,244,99),(1$ $17,226,286,57,159,184,32,93)\}$
5) $\{1\}$,
6) $\{4\}$

There are 4 chains and 2 isolated numbers shown in Fig. 1.

Figure 1. Chain-necklace diagram for $n=300$.

List of Ts

$(38,305,207)$	$(67,276,236)$	$(96,247,265)$	$(125,218,294)$	$(36,180,163)$	$(65,151,192)$
$(39,304,208)$	$(68,275,237)$	$(97,246,266)$	$(126,217,295)$	$(37,179,164)$	$(66,150,193)$
$(40,303,209)$	$(69,274,238)$	$(98,245,267)$	$(127,216,296)$	$(38,178,165)$	$(67,149,194)$
$(41,302,210)$	$(70,273,239)$	$(99,244,268)$	$(10,206,137)$,	$(39,177,166)$	$(68,148,195)$
$(42,301,211)$	$(71,272,240)$	$(100,243,269)$	$(11,205,138)$	$(40,176,167)$	$(69,147,196)$
$(43,300,212)$	$(72,271,241)$	$(101,242,270)$	$(12,204,139)$	$(41,175,168)$	$(70,146,197)$
$(44,299,213)$	$(73,270,242)$	$(102,241,271)$	$(13,203,140)$	$(42,174,169)$	$(71,145,198)$
$(45,298,214)$	$(74,269,243)$,	$(103,240,272)$	$(14,202,141)$	$(43,173,170$,	$(72,144,199)$
$(46,297,215)$	$(75,268,244)$	$(104,239,273)$	$(15,201,142)$	$(44,172,171)$	$(73,143,200)$
$(47,296,216)$	$(76,267,245)$	$(105,238,274)$	$(16,200,143)$,	$(45,171,172)$	$(74,142,201)$
$(48,295,217)$	$(77,266,246)$	$(106,237,275)$	$(17,199,144)$	$(46,170,173)$	$(75,141,202)$
$(49,294,218)$	$(78,265,247)$	$(107,236,276)$	$(18,198,145)$	$(47,169,174)$	$(76,140,203)$
$(50,293,219)$	$(79,264,248)$	$(108,235,277)$	$(19,197,146)$	$(48,168,175)$	$(77,139,204)$
$(51,292,220)$	$(80,263,249)$	$(109,234,278)$	$(20,196,147)$	$(49,167,176)$	$(78,138,205)$
$(52,291,221)$	$(81,262,250)$	$(110,233,279)$	$(21,195,148)$	$(50,166,177)$	$(79,137,206)$
$(53,290,222)$	$(82,261,251)$	$(111,232,280)$	$(22,194,149)$	$(51,165,178)$	$(80,136,207)$
$(54,289,223)$,	$(83,260,252)$	$(112,231,281)$	$(23,193,150)$	$(52,164,179)$	$(81,135,208)$
$(55,288,224)$	$(84,259,253)$	$(113,230,282)$	$(24,192,151)$	$(53,163,180)$	$(82,134,209)$
$(56,287,225)$	$(85,258,254)$	$(114,229,283)$	$(25,191,152)$	$(54,162,181)$	$(83,133,210)$
$(57,286,226)$	$(86,257,255)$	$(115,228,284)$	$(26,190,153)$	$(55,161,182)$	$(84,132,211)$
$(58,285,227)$	$(87,256)$	$(116,227,285)$	$(27,189,154)$	$(56,160,183$,	$(85,131,212)$
$(59,284,228)$,	$(88,255,257)$	$(117,226,286)$	$(28,188,155)$	$(57,159,184)$	$(86,130,213)$
$(60,283,229)$	$(89,254,258)$	$(118,225,287)$	$(29,187,156)$	$(58,158,185)$	$(87,129,214)$
$(61,282,230)$	$(90,253,259)$	$(119,224,288)$	$(30,186,157$,	$(59,157,186)$	$(88,128,215)$
$(62,281,231)$	$(91,252,260)$	$(120,223,289)$	$(31,185,158)$	$(60,156,187)$	$(89,127,216)$
$(63,280,232)$	$(92,251,261)$	$(121,222,290)$	$(32,184,159)$	$(61,155,188)$	$(90,126,217)$
$(64,279,233)$	$(93,250,262)$	$(122,221,291)$	$(33,183,160)$	$(62,154,189)$	$(91,125,218)$
$(65,278,234)$,	$(94,249,263)$	$(123,220,292)$	$(34,182,161)$	$(63,153,190)$	$(93,32,184)$
$(66,277,235)$	$(95,248,264)$	$(124,219,293)$	$(35,181,162)$	$(64,152,191)$	

256 has only one choice 87 . Hence there cannot be a necklace. An end number of a T may also have an open end. Example $(264,248,95), 95$ has only one option 248.

Interconnecting the trios

1. $256,87,129,214,298,45,171,172,44,299,213,130,86,257,255,88,128,215,297,46,170,173,43,300,212,131,85,258,254$, $89,127,216,296,47,169,174,42,301,211,132,84,259,253,90,126,217,295,48,168,175,41,302,210,133,83,260,252,91,125$, $218,294,49,167,176,40,303,209,134,82,261,251,92,33,183,160,56,287,225,118,98,245,267,76,140,203,13,14,202,141$, $75,268,244,99,26,190,153,63,280,232,111,105,238,274,69,147,196,20$
2. $124,219,293,50,166,177,39,304,208,135,8126225093,32,184,159,57,286,226,117$
3. $19,197,146,70,273,239,104,112,231,281,62,154,189,27,37,179,164,52,291,221,122$
4. $22,194,149,67,276,236,107,109,234,278,65,151,192,24,101,242,270,73,143,200,16,11,205,138,78,265,247,96,120,223,289,54,162,181$, $35,29,187,156,60,283,229,114,102,241,271,72,144,199,17,108,235,277,66,150,193,23$
5. $121,222,290,53,163,180,36,28,188,155,61,282,230,113,103,240,272,71,145,198,18$
6. $116,227,285,58,158,185,31,94,249,263,80,136,207,305,38,178,165,51,292,220,123$
7. $21,195,148,68,275,237,106,110,233,279,64,152,191,25,100,243,269,74,142,201,15,12,204,139,77,266,246,97,119,224,288,55,161,182$, $34,30,186,157,59,284,228,115,10,206,137,79,264,248,95$

Inserting the LONs

1. $(256,87,129,214,298,45,171,172,44,299,213,130,86,257,255,88,128,215,297,46,170,173,43,300,212,131,85,258,254$, $89,127,216,296,47,169,174,42,301,211,132,84,259,253,90,126,217,295,48,168,175,41,302,210,133,83,260,252,91,125$, $218,294,49,167,176,40,303,209,134,82,261,251,92,33,183,160,56,287,225,118,98,245,267,76,140,203,13,14,202,141$, $75,268,244,99,26,190,153,63,280,232,111,105,238,274,69,147,196,20), 7$
2. $1,(124,219,293,50,166,177,39,304,208,135,8126225093,32,184,159,57,286,226,117)$
3. $8,(19,197,146,70,273,239,104,112,231,281,62,154,189,27,37,179,164,52,291,221,122), 3$
4. $5,(22,194,149,67,276,236,107,109,234,278,65,151,192,24,101,242,270,73,143,200,16,11,205,138,78,265,247$,
```
    96,120,223,289,54,162,181,35,29,187,156,60,283,229,114,102,241,271,72,144,199,17,108,235,277,66,150,
    193,23,4
5. 121,222,290,53,163,180,36,28,188,155,61,282,230,113,103,240,272,71,145,198,18,9
6. 116,227,285,58,158,185,31,94, 249,263,80,136,207, 305,38,178,165,51,292,220,123,2
7. 6,21,195,148,68,275,237,106,110,233,279,64,152,191,25,100,243,269,74,142,201,15,12,204,139,
77,266,246,97,119,224,288,55,161,182,34,30,186,157,59,284,228,115,10,206,137,79,264,248,95
```

After interconnecting the strings, we get the chain-necklace diagram as shown in Fig. 2.

Figure 2. A single chain for $n=305$.
The sum of the first number 256 and the last number 95 is not a perfect cube. Hence, it gives a full chain as shown in the Figure. This is the same reported in [2]. If we increase the number n from 305 to 472, the number 256 will continue to have a single choice 87 . Hence no necklace.
(C) $n=386$

Ts are:

87,256	$80,263,249$	$73,270,242$
$86,257,255$	$79,264,248$	$72,271,241$
$85,258,254$	$78,265,247$	$71,272,240$
$84,259,253$	$77,266,246$	$70,273,239$
$83,260,252$	$76,267,245$	$69,274,238$
$82,261,251$	$75,268,244$	$68,275,237$
$81,262,250$	$74,269,243$	$67,276,236$

$66,277,235$
$65,278,234$
$64,279,233$
$63,280,232$
$62,281,231$
$61,282,230$
$60,283,229$
$59,284,228$
$58,285,227$
$57,286,226$
$56,287,225$
$55,288,224$
$54,289,223$
$53,290,222$

52,291,221
87,256
80,263,249
$66,277,235$
$65,278,234$
$64,279,233$
$63,280,232$
$62,281,231$
$61,282,230$
$60,283,229$
$5,281,228$
$58,285,227$
$57,286,226$
$56,287,225$
$55,288,224$
$54,289,223$
$53,290,222$
51,292,220
50,293,219
49,294,218
48,295,217
47,296,216
46,297,215

$45,298,214$	$23,320,192$	$1,342,170$	$148,364,365$	$126,386,343$	$106,237,275$
$44,299,213$	$22,321,191$	$169,343,386$	$147,365,364$	$127,216,296$	$105,238,274$
$43,300,212$	$21,322,190$	$168,344,385$	$146,366,363$	$126,217,295$	$104,239,273$
$42,301,211$	$20,323,189$	$167,345,384$	$145,367,362$	$125,218,294$	$103,240,272$
$41,302,210$	$19,324,188$	$166.346,383$	$144,368,361$	$124,219,293$	$102,241,271$
$40,303,209$	$18,325,187$	$165,347,382$	$143,369,360$	$123,220,292$	$101,242,270$
$39,304,208$	$17,326,186$	$164,348,381$	$142,370,359$	$122,221,291$	$100,243,269$
$38,305,207$	$16,327,185$	$163,349,380$	$141,371,358$	$121,222,290$	$99,244,268$
$37,306,206$	$15,328,184$	$162,350,379$	$140,372,357$	$120,223,289$	$98,245,267$
$36,307,205$	$14,329,183$	$161,351,378$	$139,373,356$	$119,224,288$	$97,246,266$
$35,308,204$	$13,330,182$	$160,352,377$	$138,374,355$	$118,225,287$	$96,247,265$
$34,309,203$	$12,331,181$	$159,353,376$	$137,375,354$	$117,226,286$	$95,248,264$
$33,310,202$	$11,332,180$	$158,354,375$	$136,376,353$	$116,227,285$	$94,249,263$
$32,311,201$	$10,333,179$	$157,355,374$	$135,377,352$	$115,228,284$	$93,250,262$
$31,312,200$	$9,334,178$	$156,356,373$	$134,378,351$	$114,229,283$	$92,251,261$
$30,313,199$	$8,335,177$	$155,357,372$	$133,379,350$	$113,230,282$	$91,252,260$
$29,314,198$	$7,336,176$	$154,358,371$	$132,380,349$	$112,231,281$	$90,253,259$
$28,315,197$	$6,337,175$	$153,359,370$	$131,381,348$	$111,232,280$	$89,254,258$
$27,316,196$	$5,338,174$	$152,360,369$	$130,382,347$	$110,233,279$	$88,255,257$
$26,317,195$	$4,339,173$	$151,361,368$	$129,383,346$	$109,234,278$	
$25,318,194$	$3,340,172$	$150,362,367$	$128,384,345$	$108,235,277$	
$24,319,193$	$2,341,171$	$149,363,366$	$127,385,344$	$107,236,276$	

Eliminating first the common numbers from Ts, and then attaching the LONs around them, we get

1. $(137),(375,354,158),(185,327,16), 48,295,217),(126,386,343),(169),(47,296,216),(127,385,344),(168)$, $175,337,6,210,302,41,84,259,253,(90), 35,308,204,139,373,356,(156),(60,283,229),(114),(102,241,271)$, (72),(53,290,222),(121),(95,248,264),(79),(46,297,215),(1,342,170),
2. $(77,266,246),(97),(119,224,288),(55),(70,273,239)$
3. $(200,312,31),(33,310,202),(141,371,358)(154),(62,281,231),(112),(104),(21,322,190),(26,317,195)$,
4. $(37,306,206),(10,333,179)(\mathrm{N})$
5. $(256,87),(38,305,207),(136,376,353),(159),(184,328,15),(201,311,32),(93,250,262.81), 44,299,213,130,382$, $347,(165),(178,334,9),(18,325,187),(29,314,198),(145,367,362), 150,(193,319,24),(192,320,23),(4,339,173)$, $(43,300,212), 131,381,348),(164),(52,291,221),(122),(94,249,263),(80),(45,298,214), 129,383,346,(166)$, (177,335,8),(19,324,188),(28,315,197),(146,366,363),(149),(194,318,25),(191,321,22),(103,240,272),(71), (54,289,223),(120),(96,247,265),(78),(138,374,355),(157),(186,326,17),(108,235,277),(66),(59,284,228), (115),(101,242,270),73),(143,369,360),(152),(64,279,233),(110),(106,237,275),(68),(148,364,365),(147), (196,316,27),(189,323,20),(105,238,274),(69),(56,287,225),(118),(98,245,267),(76),(49,294,218),(125), (91,252,260),(83),(133,379,350),(162),(181,331,12),(113,230,282),(61),(155,357,372),(140),(203,309,34), (30,313,199),(144,368,361),(151),(65,278,234),(109),(107,236,276),(67),(58,285,227),(116),(100,243,269), (74),(142,370,359),(153),(63,280,232),(111),(14,329,183),(160,352,377),135),(208,304,39),(86,257,255), (88),(128,384,345),(167),(176,336,7),(57,286,226),(117),(99,244,268),(75),(50,293,219),(124),(92,251,261),(82),(134,378,351),(161),(1 $82,330,13),(51,292,220),(123),(2,341,171),(172,340,3),(5,338,174),(42,301,211)$, $(132,380,349),(163),(180,332,11),(205,307,36),(89,254,258,85),(40,303,209)$

LONs: none.
Thus, we see that there are 4 chains and 1 necklace shown in Fig. 5. Hence, the minimal number is 305 for a single chain given in [4] and not 386 as claimed by Anurag Sahay [4]. He has given the arrangement of few numbers which tallies with our numbers also. But after adding the subsequent numbers $258,85,40,303,209$, it comes to a dead end.

Figure 3. Chain-necklace diagram for $n=386$.
(D) $n=473$

Every number has more than one options. Therefore, it might give a necklace.

List of Ts

$127,216,296$	$105,238,274$	$76,436,293$	$54,458,271$	$120,392,337$	$98,414,315$
$126,217,295$	$104,239,273$	$75,437,292$	$53,459,270$	$119,393,336$	$97,415,314$
$125,218,294$	$103,240,272$	$74,438,291$	$52,460,269$	$118,394,335$	$96,416,313$
$124,219,293$	$102,241,271$	$73,439,290$	$51,461,268$	$117,395,334$	$95,417,312$
$123,220,292$	$101,242,270$	$72,440,289$	$50,462,267$	$116,396,333$	$94,418,311$
$122,221,291$	$100,243,269$	$71,441,288$	$49,463,266$	$115,397,332$	$93,419,310$
$121,222,290$	$99,244,268$	$70,442,287$	$48,464,265$	$114,398,331$	$92,420,309$
$120,223,289$	$98,245,267$	$69,443,286$	$47,465,264$	$113,399,330$	$91,421,308$
$119,224,288$	$97,246,266$	$68,444,285$	$46,466,263$	$112,400,329$	$90,422,307$
$118,225,287$	$96,247,265$	$67,445,284$	$45,467,262$	$111,401,328$	$89,423,306$
$117,226,286$	$95,248,264$	$66,446,283$	$44,468,261$	$110,402,327$	$88,424,305$
$116,227,285$	$94,249,263$	$65,447,282$	$43,469,260$	$109,403,326$	$87,425,304$
$115,228,284$	$93,250,262$	$64,448,281$	$42,470,259$	$108,404,325$	$86,426,303$
$114,229,283$	$92,251,261$	$63,449,280$	$41,471,258$	$107,405,324$	$85,427,302$
$113,230,282$	$91,252,260$	$62,450,279$	$40,472,257$	$106,406,323$	$84,428,301$
$112,231,281$	$90,253,259$	$61,451,278$	$39,473,256$	$105,407,322$	$83,429,300$
$111,232,280$	$89,254,258$	$60,452,277$	$126,386,343$	$104,408,321$	$82,430,299$
$110,233,279$	$88,255,257$	$59,453,276$	$125,387,342$	$103,409,320$	$81,431,298$
$109,234,278$	$87,256,473$	$58,454,275$	$124,388,341$	$102,410,319$	$80,432,297$
$108,235,277$	$79,433,296$	$57,455,274$	$123,389,340$	$101,411,318$	$169,343,386$
$107,236,276$	$78,434,295$	$56,456,273$	$122,390,339$	$100,412,317$	$168,344,385$
$106,237,275$	$77,435,294$	$55,457,272$	$121,391,338$	$99,413,316$	

Eliminating the common numbers from Ts

```
{127,216,296, 433,79,46,466,263,249,94,418,311}
{169,343,386,126,217,295,434,78,47,465,264,248,95,417,312}
{342,387,125,218,294,435,77,48,464,265,247,96,416,313}
{341,388,124,219,293,436,76,49,463,266,246,97,415,314}
{340,389,123,220,292,437,75,50,462,267,245,98,414,315}
{339,390,122,221,291,438,74,51,461,268,244,99,413,316}
{338,391,121,222,290,439,73,52,460,269,243,100,
412,317}
{337,392,120,223,289,440,72,53,459,270,242,101,
411,318}
{336,393,119,224,288,441,71,54,458,271,241,102,
410,319}
{335,394,118,225,287,442,70,55,457,272,240,103,
409,320}
{334,395,117,226,286,443,69,56,456,273,239,104,
408,321}
{333,396,116,227,285,444,68,57,455,274,238,105,
407,322}
{332,397,115,228,284,445,67,58,454,275,237,106,
406,323}
{331,398,114,229,283,446,66,59,453,276,236,107,
405,324}
{330,399,113,230,282,447,65,60,452,277,235,108,
403,325}
{329,400,112,231,281,448,64,61,451,278,234,109,
402,326}
{328,401,111,232,280,449,63,62,450,279,233,110,
401,327}
{310,419,93,250,262,467,45}
```

$\{127,216,296,433,79,46,466,263,249,94,418,311\}$
$\{169,343,386,126,217,295,434,78,47,465,264,248,95,417,312\}$
,
$\{340,389,123,220,292,437,75,50,462,267,245,98,414,315\}$
$\{339,390,122,221,291,438,74,51,461,268,244,99,413,316\}$
,
$\{337,392,120,223,289,440,72,53,459,270,242,101$, 411,318\}
$\{336,393,119,224,288,441,71,54,458,271,241,102$, 410,319\}
$\{335,394,118,225,287,442,70,55,457,272,240,103$, 409,320\}
, 408,321\}
$\{333,396,116,227,285,444,68,57,455,274,238,105$, 407,322\}
,115,228,284,445,67,58,454,275,237,106 406,323\}
$\{331,398,114,229,283,446,66,59,453,276,236,107$, 405,324\}
$\{330,399,113,230,282,447,65,60,452,277,235,108$, 403,325\}
$\{329,400,112,231,281,448,64,61,451,278,234,109$, 402,326\} 401,327\}
$\{310,419,93,250,262,467,45\}$
$\{309,420,92,251,261,468,44\}$
$\{308,421,91,252,260,469,43\}$
$\{307,422,90,253,259,470,42\}$
$\{306,423,89,254,258,471,41\}$
$\{305,424,88,255,257,472,40\}$
$\{304,425,87,256,456,473,39\}$
$\{86,426,303\}$
$\{85,427,302\}$
$\{84,428,301\}$
$\{83,429,300\}$
\{82,430,299\}
\{81,431,298\}
$\{80,432,297\}$
\{168,344,385\}
LONs are
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,2 6,27,28,29,30,31,32,33,34,35,36,37,38,128,129,130,131,132,133,13 $4,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149$, $150,151,152,153$,
$154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,16$ 9,170,171,172,173,174,175,176,177,178,
179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,19 4,195,196,197,198,199,200,201,202,203,
204,205,206,207,208,209,210,211,212,213,214,215,345,346,347,34 8,349,350,351,352,353,354,355,356,357,
$358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,37$ 3,374,375,376,377,378,379,380,381,382, 383,384,407,420,430,455,468

Inserting the LONs, we get

```
{168,344,385,127,216,296, 433,79,46,466,263,249,94,418,311}
{217,295,434,78,47,465,264,248,95,417,312,200,16,11,205,138,374,355,157,186}
{170,173,342,387,125,218,294,435,77,48,464,265,247,96,416,313}
{172,171,341,388,124,219,293,436,76,49,463,266,246,97,415,314,29,35,181,162,350,379,133}
{340,389,123,220,292,437,75,50,462,267,245,98,414,315,197,19,8}
{339,390,122,221,291,438,74,51,461,268,244,99,413,316,27,189,154,358,371,141,202,14,13,203,309,420,92,251,261,468,
44,81,431,298,214,129,383,346,166,177}
{126,386,343,169,174,338,391,121,222,290,439,73,52,460,269,243,100,412,317,195,21}
{175,337,392,120,223,289,440,72,53,459,270,242,101,411,318}
{176,336,393,119,224,288,441,71,54,458,271,241,102,410,319}
{335,394,118,225,287,442,70,146,366,363,149}
{320,409,103,240,272,457,55,161,351,378,134,82,430,299,213,3,24,192,151,361,368,144,199,17,10,206,137,375,354,158,
{334,395,117,226,286,443,69,56,456,273,239,104,408,321,191,25,2,6,210}
{37,179,333,396,116,227,285,444,68, 57,455,274,238,105,407,322}
{194,22,5,211,132,380,349,163,180,332,397,115,228,284,445,67,58,454,275,237,106,406,323,20,196,147,365,364,148}
398,331,12,15,201,142,370,359,153,190,322,407,105,238,274,455,57,159,353,376,136,207,9,18,198,145,367,362,150,193
114,229,283,446,66,59,453,276,236,107,405,324}
{30,34,182,330,399,113,230,282,447,65,60,452,277,235,108,404,325}
{39,473,456,256,87,425,304,208,135,377,352,160,183,329,400,112,231,281,448,64,152,360,369,143}
{140,372,357,155,61,451,278,234,109,402,326}
{32,184,328,401,111,232,280,449,63,62,450,279,233,110,401,327}
{185,31,33,310,419,93,250,262,467,45}
{187,156,356,373,139,204,308,421,91,252,260,469,43}
188,28,36,307,422,90,253,259,470,42,301,428,84}
{306,423,89,254,258,471,41,85,427,302,131,381,348,164)}
```

\{178,165,347,382,130,86,426,303\}
$\{209,7,1,26,38,305,424,88,255,257,472,40\}$
\{83,429,300,212,4,23\}
$\{80,432,297,215,128,384,345,167\}$
After interconnecting the Ss, we get the chain-necklace diagram as shown in Fig. 4.

Figure 4. Chain-necklace diagram for $n=473$.

The sum of the first number 168 and the last number 175 is 343 ; a perfect cube. Hence, it is a full necklace. This is the same as given by Giovanni [4]. It has been verified that the numbers below 473 do not form a full necklace.

III CONCLUSION

Rathore's method is used for obtaining the chain-necklace diagrams such that the sum of two consecutive numbers is a perfect cube. The spread in the cube of numbers is much larger than that in square values. Hence, we get the first full chain for $n=305$ and the first full necklace for $n=473$ as against 15 and 32 , respectively, for the square case [4].

REFERENCES

[1] https://math.stackexchange.com/questions/4289064/ generalisation-of-this-circular-arrangement-of-numbers-from1 -to- 32 -with two adjacent numbers is a perfect power.
[2] https://math.stackexchange.com/questions/4289064, Arranging numbers from 1 to n such that the sum of every two adjacent numbers is a perfect power
[3] T. S. Rathore, "Arranging integer numbers on a loop such that the sum of any two adjacent numbers is a perfect square", IEEE Regio 10 Symposium, IIT Bombay, July 1-3, 2022.
[4] https://www.primepuzzles.net, Puzzle 311, Sum to a cube

Dr. Tejmal Rathore received B Sc (Engg), ME, and PhD (Electrical Engineering) all from Indore University, Indore. He served SGSITS, Indore (1965-1978), IIT Bombay (1978-2006), and St Francis Institute of Technology, Borivali (20062014) as Dean (R\&D), and IIT Goa (2017-2019) as a Visiting Professor.

He was a post-doctoral fellow (1983-85) at the Concordia University, Canada and a visiting researcher at the University of South Australia, Adelaide (March-June 1993). He was an ISTE visiting professor (2005-2007). Published and presented over 225 research papers. Authored the book, Digital Measurement Techniques, New Delhi: Narosa Publishing House, 1996 and Alpha Science International Pvt. Ltd. UK, 2003 and translated in Russian language in 2004. He is the contributing author of the revised 3rd edition of the book Network Analysis by M E Van Valkenburg published by Pearson India Education Services Pvt. Ltd., Noida. He was the Guest Editor of the special issue of Journal of IE on Instrumentation Electronics (1992). He is a member on the editorial boards of ISTE National Journal of Technical Education and IETE Journal of Education.

Prof. Rathore is a Life Senior Member of IEEE (USA), Fellow IETE and IE(I). Member of Computer Society of India and Instrument Society of India.

