
11

GLIMPSE - Journal of Computer Science • Vol. 13, No. 1, JANUARY-JUNE 2022

Abstract: For the majority of applications, multi-core
architectures are built to give a reasonable degree of
performance per unit power. To get the good result
from chip multiprocessors (CMPs), we need to divide our
program into threads that run on several cores at the same
time. This concurrent execution may arise critical section
problem. In this paper, the brief overview of asymmetric
multi-core processors is given to accelerate the critical
section execution.

Keywords: CMP, Critical Section, Threads, Parallel
processing, Multi-core.

I. INTRODUCTION
In Multiprocessing many processors work at the same
time in computer system. The central processing unit is the
computational unit that runs programs and applications.
The CPU is the arithmetic and logic engine that executes
applications and programs. More than one user program can
run at the same time using several CPUs. An ongoing job can
be rescheduled from one CPU to another since all of the CPUs
share the same user-mode instruction set. An asymmetric
multi-core processor, on the other hand, contains numerous
cores on a same chip that may be of different architectures.

A symmetric multicore processors are made up of cores
that share the same instruction set architecture but differ
in efficiency, complication, and energy usage [1], [2]. An
Asymmetric multicore processor may consist of many
slow, tiny, and simple cores as well as a small number of
fast, massive, and complicated cores. A more power saving
choice to symmetric multicore CPUs has been suggested:
AMPs. Because many threads cannot edit shared data at the
same time, access to shared data is wrapped within crucial
segments.

A crucial part is only executed by one thread at a time; other
threads wishing to run the same crucial part must delay.
Threads can be serialized at critical areas, lowering flexibility
and efficiency (that is, the threads count at which efficiency
stabilizes). This efficiency degrades can be mitigated by
reducing the running time within crucial portions.

A critical section is only executed by one thread at a time;

Asymmetric Multi-Core
Architectures

Santosh Kumar Upadhyay
Assistant Professor, Ajay Kumar Garg Engineering College,Ghaziabad, UP, India

ersk2006@gmail.com

additional threads that want to execute the same critical part
must wait. Threads can be serialized in critical areas, lowering
scalability and effectiveness (that is, the threads count at which
performance saturates). By decreasing the running time inside
crucial part the performance loss can be minimized.

CMP cores can be symmetric (SCMP) or asymmetric
(Asymmetric CMP) (ACMP). Varied workloads demand
different CPU resources for superior efficiency, as is widely
known. Some loads are load-store intensive, while others are
integer ALU intensive, floating-point (FP) intensive, memory
bus intensive, or a mix of the two. [3]. An ACMP has a higher
chance of delivering results while using fewer resources.

II. PROBLEM AND RELATED WORK
There are two pieces to a multithreaded application. Amdahl’s
bottleneck is represented by the serial component. A parallel
portion is one in which multiple threads run at the same time.
At any one-time, single thread can run a critical segment.
Other threads that do not require execution of that crucial
segment can progress while it is being executed. [4].

All previous research has been focused on improving the
program’s implementation in critical sections. When a process
operates in the critical section, it makes all three portions of
the kernel busy, namely the beginning, end, and parallel parts,
which are all run by numerous threads. As a result, even if just
one process requests, the entire system becomes busy.

The optimization part was previously addressed by following
actions:
•	 Improving the shared data locality and locks.
•	 Concealing the delay of critical segments.
•	 Asymmetric chip multiprocessors
•	 Remote procedure calls

III. PROPOSED SOLUTION
Asymmetric multi-core processors have numerous cores on
a same chip, although they may be of distinct architectures.
These architectures can also be used to speed up the critical
section. IBM’s Cell processor is a nice example currently
on the market. An ACMP is employed in a video game
named as the Sony PlayStation 3. The Cell is equipped with
nine processing unit cores, eight data-processing cores and

12

GLIMPSE - Journal of Computer Science • Vol. 13, No. 1, JANUARY-JUNE 2022

one general-purpose processing unit. The Power Processor
Element (PPE), a single multifunctional core, manages
interactions in the other cores and assigns computational
workloads to another cores for computing. Synergistic
Procedural Cores are the remaining eight cores and are
optimized for good floating-point throughput, particularly
when performing vector operations.

The basic architecture [4] is proposed for speeding the critical
part using ACMPs. There are 13 processors in this architecture.
The serial and important sections of the application run on the
high-performance core, while the remaining parallel sections
run on the tiny cores.

Figure 1. An Asymmetric chip architecture consists of one high
performance core and several smaller cores.

Figure 1 depicts an ACS design developed on an ACMP with
one major core (P0) and twelve mini cores (P1 to P12). P0
is dedicated to the execution of important sections by ACS,
which executes parallel threads on tiny cores (as well as serial
program portions). The critical section execution requests
from the tiny cores are buffered by a critical section request
buffer (CSRB) in P0. Critical section return (CSRET) and
critical section execution call (CSCALL) are the two new
accelerating critical section instructions that are entered at the
start and final point of a crucial region, respectively.

Figure 2. Source code and its execution: baseline (a) and ACS (b).

The comparison of ACS to a typical system is shown in
Figure 2. In classical locking (Figure 2a), when a micro core
discovers a crucial part, it achieves the lock safeguarding the
crucial segments, runs the crucial part, and releases the lock.

When a tiny core in ACS (Figure 2b) performs a CSCALL, it
sends the CSCALL to P0 and waits until it gets a reply. When
CSCALLs come, P0 buffers them in the CSRB. P0 starts
running the designated crucial section as quickly as possible,
then switches to regular processing until it finds a CSRET
instruction, that shows that the crucial section has finished.
When P0 runs the CSRET command, it transmits a critical
section done (CSDON) signal. When P0 executes the CSRET
instruction, it sends a critical section done (CSDONE) signal
to the asking small core. After getting this indication, the
small core resumes normal operation.
Shorter jobs will run on small cores, whereas larger jobs will
run on a large core, owing to its design. The high-performance
core will be in responsible of scheduling.

IV. CONCLUSION
In this paper, asymmetric multicore processor is discussed
with its present implementation in IBM’s cell processor which
is used in the Sony PlayStation 3 video game console which
consists of 9 processors. And a valuable model is discussed
which accelerates the critical section execution. Using this
model, the hardware is changed in such a manner to accelerate
the critical section, before this the optimizations are done on
the basis of programming. But here the asymmetric multicores
are designed in such manner to make the executions much
faster.

Still there are lots more methods to improve the performance
and accelerate the critical section. We can also implement
both the software as well as hardware aspects to improve
our results by making a bit change in use of locks, caching
mechanism, scheduling, etc.

V. REFERENCES
[1]	 R. Kumar et al. Single-ISA Heterogeneous Multicore Architec-

tures for Multithreaded Workload Performance, ISCA, 2004.
[2]	 Jian Li and Jose F. Martinez. “Dynamic Power-Performance

Adaptation of Parallel Computation on Chip Multiprocessos,
in High-Performance Computer Architecture”, 2006.

[3]	 Anup Das, Rance Rodrigues, Israel Koren and Sandip Kundu,
“A Study on Performance Benefits of Core Morphing in an
Asymmetric Multicore Processor” in IEEE 2010.

[4]	 M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. “Ac-
celerating Critical Section Execution with Asymmetric Multi-
core Architectures” in IEEE, 2010.

About The Author
Santosh Kumar Upadhyay is an Assistant
Professor in the CSE deptt. at AKGEC,
Ghaziabad, UP, India since 2018. He has
received Bachelor’s degree in computer
Science and Engineering from UPTU in
2005. and Master with Honors in Informa-
tion Technology.
He is silver medalist in Master of Technol-
ogy in Tezpur University. The major fields

of study is network security, data mining, Machine learning.

