
39

8) Infrasound: They are audio frequencies below threshold of
hearing of human ears (1 to .001Hz) radiated from many
geophysical processes. These frequencies below 20Hz can
define the range of infrasound and designated as acoustic
and gravity waves. Sodar echograms can easily distinguish
signatures of sinusoidal, conical (thermal convection) or
other complex natural processes.

 A network of suitably placed 3 acoustic sounders in a

earthquake prone area can determine the direction of wave
propagation which will help in locating the epicentre.

9) VLF and ULF Electromagnetic Emissions: The
Electromagnetic (EM) emissions by seismic events will
help to know the earthquake events prior to their rupture
for short term earthquake prediction.

 Measurement of electromagnetic phenomenon can

be classified in 3 types: 1) The passive ground based
observation for lithospheric emissions, 2) The ground
based observation with use of transmitter signals for study
of seismic atmospheric and ionospheric perturbations, 3)
The satellite observations.

 A comparison between seismic and electromagnetic data
will give understanding of fundamental of physics of the
earthquake preparation process.

 A network of conventional magnetic field detectors spaced
less than 100 kms apart would be required to detect ULF
magnetic field fluctuations prior to the earthquakes with
magnitude greater than 7.

 Under some conditions superconductivity magnetic field
gradiometers could offer greater sensitivity and range.
Employing bore holes and terrestrial antennas, VLF electric
field perturbations can be monitored.

10. Thermal Anomalies: Earth’s crust passes through an
Earthquake preparatory phase before imminent earthquake.
Accumulation of stresses and resultant pressure builds up
loads to rise of inland surfaces temperature (LST). The
enhanced TIR (Thermal infrared) emission from Earth’s
surface retrieved by satellites prior to earthquake is called
‘Thermal Anomaly’.

 Statistical processing of data of GPS received from

network, together with various other atmospheric
parameters demonstrate the possibility of an early warning
of an impending strong earthquake.

IV. REGION OF RESEARCH
The F region ionosphere or ionospheric parameters that offer the
precursory signatures of major impending earthquakes. The F

layer is the closest to sun and is always ionized irrespective of
hours of the day as well as season of the year. This ionization
density is affected largely by earth’s magnetic field, winds,
storm and ionospheric tides.

There is an NPL network of Digital Ionosonde systems for
extensive measurements of f0F2, hmF2, VHF and UHF
to continuously monitor different ionospheric layer. This
information can be used to figure out a pattern that would be
of help to find earthquake precursors.

Atmospheric dynamics in lower planetary boundary layer
(LPBL) or planetary boundary layer (PBL) that is one kilometre
of atmospheric environment, adjacent to the earth’s surface that
transfer momentum and heat energy from ground to higher
levels.

 Figure 1. Tectonic plates of the Earth crust. (Source: http://

pubs.usgs.gov/gip/dynamic/slabs.html1)

 Figure 2. Network of digital ionosondes.

EARTHQUAKE PREDICTION

40

AKGEC INTERNATIONAL JOURNAL OF TECHNOLOGY, Vol. 7, No. 2

Sodar or acoustic radar model can be used to record basic types
of single layer lower atmospheric structures like convective
plumes, inversion with flattop, inversion with small spikes,
inversion with tall spikes, rising inversion, rising inversion
with convective plumes and many others depending upon type
of observations and experts.

V. FUTURE SCOPE
Classification of patterns produced by sodar models with
any pattern recognition technique so that the dependency on
scientists to analyse the results for predicting the earthquake
can be minimized.

VI. REFERENCES
[1]. “A Connectionist Approach to Sodar Pattern Classification”,

IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 2,
April 2004.

[2]. “Unique Atmospheric Wave: Precursor to 26 January 2001 Bhuj,
India earthquake”, International Journal of Remote Sensing.

[3]. “Ionospheric Perturbations over Delhi Caused by the December
26, 2004 Sumatra Earthquake”.

Mohini Preetam Singh received Bachelor’s degree
in Electronics and Instrumentation from UPTU,
India and Master’s degree in Microelectronics
from Subharti University, India. She received
Academic Excellence award for research work in
“NEGF Approach in Silicon Nanowire Transistors”
in her Master’s. She is pursuing PhD (Part time)
in Electronics and Communication from Amity
University, Noida. She is working as an Assistant
Professor in Vidya College of Engineering since
2010. Her current work focus is on “Pattern
Recognition of thermal anomalies”.

41

Abstract: In this paper we illustrate a way to cluster similar news
articles based on their term frequency. We use python and nltk to
recognize keywords and subsequently use hierarchical clustering
algorithm. This method can be used to build news aggregation
backends. Aggregation means clustering like documents from
different sources. There is fast moving data and heterogeneity
of sources in news aggregation scenarios. We need to remove the
duplicates arising due to heterogeneous sources.

Keywords: Python, nltk, Feedparser, News Aggregation. Hierarchical
Clustering, Algorithms, Aggregation, News, Text Mining

I. INTRODUCTION
NEWS Aggregators can be considered a multilateral platform
of interconnection [1]. In principle, news aggregators can be
a substitute or a complement to the news outlets who invest
in the creation of news stories. A policy debate centers around
the decrease in the incentives for news creation that results
if readers choose to consume their news through aggregators
without clicking through to the news websites or generating
any revenue for the outlets [2].

Getting these two ideas in perspective our idea is to get a small
script in python which anyone can run on their own systems,
decide their own set of RSS feeds and get the relevant news
articles from past hours. The goal explicitly is: given multiple
sources of documents, RSS news feeds, cluster together similar
documents that cover the same material. For instance, both NYT
and Washington Post might cover Hillary Clinton’s Primary win
in New York. In the google news we can see that USA Today,
Boston Herald and 10 other news organizations are publishing
the same story. We want to recognize that they are the same
underlying story and cluster or aggregate them.

II. RELATED WORK
There are lots of free and premium web based applications for
feed aggregation as well as news aggregation, though they serve
the larger purpose of providing streamlined news, our project
focuses on using open source tools and libraries to create a news
aggregation backend which is lightweight and use it to power a
news aggregation engine that can be personalized on per user
basis. Some example of news aggregator are – techmeme.com,

feedly.com, flipboard.com etc [3][4][5].

III. METHODOLOGY
We are using following key steps to do our aggregation
as defined in next steps. We chose technology feeds for our
experiment and aggregated the most relevant technology news
articles.

Defining a Set of RSS feeds: We start with a predefined set of
RSS feeds, in our case we are starting with technology news
category so we include following feeds in our set. The data we
want to work on is very diversified and heterogeneous. So we
remove this issue by predefining a set of most rated feeds. By
doing this we can easily filter a lot of content because most of
the news publications use the same sources to research their
content. This is one of our key factors to tackle fast moving
data and recognize only the most relevant articles during the
given time period. We worked in technology news category
and used following website’s RSS feeds for our first clustering
attempt: TechCrunch, SFGate, Computer Weekly, Cnet, ZDnet,
TheNextWeb, TechGIG, CodeNinza etc.

Parse RSS feeds: Using universal feed parser [6] we can parse
our feeds. Feedparser is an excellent feed parsing library for
python, It provides functions to capture the semantics of web
news articles such as authors information, publication date,
title, body of text article, images and any other that publisher
provides. We parsed our feeds and stored the titles along with
text body of article in our corpus. Once the filtering is done by
these sources, we can carry out rest of operations.

We want to parse our sources. We used the document title
and description as a short summary. We used the natural
language processing library NLTK [7]. For each document, We
concatenate the title and description, convert to lowercase, and
remove one character words. We stored these final documents
in a corpus.

We a l s o s t o r e d t h e t i t l e s t o m a k e t h e f i n a l
results recognizable. The end result looked like:
0 TITLE Microsoft stops X-Box 360 manufacturing

News Aggregation in Python Using
Hierarchical Clustering

Rahul S Verma, Satyam Gupta and Shivangi
CSE Department, IMS Engineering College, NH-24, Near Dasna, Adhyatmik Nagar, Ghaziabad, 201009 UP India

rahul.1a94@gmail.com, satyam905@gmail.com, bitts.beans@gmail.com

42

AKGEC INTERNATIONAL JOURNAL OF TECHNOLOGY, Vol. 7, No. 2

1 TITLE Intel layoff 12,000 employees in 2016
2 TITLE New VR devices ready to change the gaming
3 TITLE Facebookenablesarticle view for publishers
4 TITLE New video shows non public facebook app

Extraction of Keywords using TF-IDF: TF-IDF composed by
two terms: first computes the normalized Term Frequency, that
is the number of times a word appears in a document upon
total number of words in that document. The second term is
Inverse Document Frequency, which computes the logarithm
of the number of the documents in the corpus divided by the
number of documents where the term appears. The TF-IDF
shows how important a word is in a document in a collection,
it takes in consideration the isolated term and the term within
the document collection. The intuition is that a term that occurs
frequently in many documents is not a good discriminator[8].
So it will scale down the frequent terms while scaling up the
rare terms; for instance, a term that occurs 10 times more than
another isn’t 10 times more important. To compute the TF-IDF
weights for each document in the corpus, we operate on the
corpus in following order of steps:

1. Tokenize the corpus in words present in each document.
2. Model the Vector Space for corpus decide features.
3. Compute the TF-IDF for each document in the corpus again.

We only want to extract top keywords from each document and
store the set of these keywords, through all documents, in key
word list that we are maintaining.
0 KEYWORDS Bill 360 stops Xbox.
1 KEYWORDS layoff 12000 2016 intel...
 99 KEYWORDS facebook red whatspp encryption.

1.1 Union these to a set of features
We have the superset of keywords, so we go through each
document again and compute TF-IDF. Thus, all the entries are
0 this will likely be a sparse vector.With a vector of TF-IDF
for each document in corpus, we can now got to our next step
which is to create a feature vector for each document in corpus
and compute the similarity.

Matrix of Cosine Similarity: With TF-IDF of each document,
we can finally use cosine similarity [9] to compare the
documents with each other. Cosine similarity measures the
similarity between two vectors of an inner product space which
measures the cosine ratio of the angle between them.

Clustering of Documents: Now we have a unique similarity
number for every pair of documents. Our next step is to cluster.
Our first choice was to use k-means++ but it get stuck at local
optima and one has to choose k for it which is problem in
news aggregation because in case of a special event almost
all channels will be covering the same news hence we’ll have
fewer number of large clusters. On the other hand on a normal

day, there may be a large number of smaller clusters. This poses
the problem with a constant k. Instead if we use agglomerative
or hierarchical clustering, we’ll be growing clusters by fusing
neighboring clusters to get a tree. Although the structure of tree
will vary on daily basis but we can choose similarity threshold
for pruning the tree to a final cluster set. Hence using hcluster
python library, we obtain the following dendrogram. Finally to
chose a threshold to prune -- how similar documents are similar
enough. 0.75 worked good for our data. Then we just need to
extract the clustered documents from the dendrogram and then
print out the IDs with titles of the final clusters.

IV. FINAL AGGREGATED RESULTS
Here are the final results of clustered news in aggregated form.
The results are impressive given the lightweight code and fast
moving nature of news.

Figure 1. Dendrogram of final clusters.

==
35 Facebook mobile app with slideshow and other cool things
65Unseen new features in FB application slideshow and more
==
10 India whatsapp largest userbase, says German study 2016
73Indians are one third of whatsapp users: German Study
==
21 Nest Dotcom To Host Mega’s Launch Event in May 2016
94 Nest Dotcom next week mega launch event in Ukraine
==
90 Data suggests Facebook’s ads work better than most TVCs
93 Facebook’s ads better than TVCs, reach more people fast
==

V. FUTURE WORK
The aggregation can be improved using weighted TF-IDF,
where words title are given preference over words in the body.
The number of keywords can be varied to see if the results
improve right now the best result is obtained at n_keyword

43

= 4. But the most important scope of this paper is to use this
method to build a functional and scalable news aggregation
web application.

VI. ACKNOWLEDGMENTS
Our thanks to experts who contributed towards through their
research in field of semantic net and content aggregation, Sir
Tim Berners Lee, Aaron Swartz for creating RSS, Kenneth
Reitz for requests library, PSF for keeping python open source
and alive.

VII. REFERENCES
[1]. Jeon, Doh-Shin and Esfahanizan, Nikrooz Nasr. 2012. News

Aggregators and Competition Among Newspapers in the
Internet. Northwestern University research facility.

[2]. Athey, Susan and Mobius, Markus.2012 The Impact of
News Aggregators on Internet News Consumption: The case
of Localization. Harvard University, Iowa University and
Microsoft Research.

[3]. Strange, Adario. What makes techmeme tick? Inventor Gabe
Rivera Explains. Wired Magazine. 2007.

[4]. Khodabakchian, Edwin. 2012. Feedly it is.
[5]. MacManus, Richard. 2010. How Flipboard was created & its

plan beyond iPad. ReadWriteWeb.
[6]. McKee, Curt. 2010. Universal feedparser for python. PSF and

PyPI.
[7]. Bird, Steven; Klein, Ewan; Baldrige, Jason and Loper, Edward.

2008. Multidisciplinary instruction with Natural Language
Toolkit. Proceedings of the Third Workshop on Issues in
Teaching Computational Linguistics, ACL.

[8]. Caraciolo, Marcel. 2011. Machine Learning with Python:
Meeting TF-IDF for Text Mining. Artificial Intelligence in
motion.

Satyam Gupta completed his under
graduation in Computer Science and
Engineering from IMS Engineering College.
Currently, he is working with ‘Teach For
India’ as a Fellow in Pune, teaching 120
kids Science. His areas of interest include
Education Technology and aligned fields of
Artificial Intelligence.

NEWS AGGREGATION IN PYTHON

44

AKGEC INTERNATIONAL JOURNAL OF TECHNOLOGY, Vol. 7, No. 2

Abstract : As fabrication technology continues to improve, smaller
feature sizes allow increasingly more integration of system
components onto a single die. Communication between these
components can become the limiting factor for performance
unless careful attention is given to designing high-performance
switches. It provides fast communication and full N-to-N
routing capabilities. This implementation is done in VERILOG,
using Synopsys Design Vision software. Implemented switch is
a modular design and consists of: buffered input port modules,
output port modules and crossbar scheduler embodying i-SLIP
scheduling algorithm. The module comprises of 8 input blocks
that receive and queue requests from input devices, 8 output
blocks that send packets to the output devices, and a crossbar
scheduler that implements the iSLIP scheduling protocol.

Keywords: Crossbar Switch, N-to-N Routing, Algorithm for i-SLIP,
Synopsys Design Vision Software

I. INTRODUCTION
THE goal of this design is to provide a fast, efficient
System on Chip (SoC) switch between 8 on-chip devices.
The eight devices are connected to one another through
a single instance of the routing switch to be designed.
Each device has three output ports, and three input ports.
i-SLIP scheduling algorithm used to design the scheduler
features following advantage over Round-Robin scheduling
algorithm :

• If an output receives any requests, it grants one that
appears next in a fixed round robin schedule starting
from the highest priority queue. However, the round
robin at the output is not incremented (module N), unless
the grant is accepted by the input in the Accept step. In
other words, the priority round robin at the output side
is incremented (provided that the grant was accepted)
after the Accept step is passed.

• Those inputs and outputs not matched at the end of one
iteration are eligible for matching in the next. This small
change to the RRM algorithm makes iSLIP capable of
handling heavy loads of traffic and eliminates starvation
of any connections. The algorithm converges in an
average of O(log N) and a maximum of N iterations.
iSLIP can fit in a single chip and is readily implemented
in hardware.

II. PROPOSED ALGORITHM
The algorithm for i-SLIP is as follows:
Step 1: Request. Each unmatched input sends a request to
every output for which it has a queued cell.

Step 2: Grant. If an unmatched output receives any requests,
it chooses the one that appears next in a fixed, round-robin
schedule starting from the highest priority element. The
output notifies each input whether or not its request was
granted. The pointer g_i to the highest priority element of
the round-robin schedule is incremented (modulo N) to one
location beyond the granted input iff the grant is accepted
in Step 3 of the first iteration.

Step 3: Accept. If an unmatched input receives a grant, it
accepts the one that appears next in a fixed, round-robin
schedule starting from the highest priority element. The
pointer a_i to the highest priority element of the round-
robin schedule is incremented (modulo N) to one location
beyond the accepted output only if this input was matched
in the first iteration.
Constraints:
• This implementation of the i-SLIP protocol will use a

fixed number of input and output ports. It begins with
an 8x8 design in synthesized static CMOS. Since the
most complex portion of the design appears to be the
programmable priority encoders, most of the design
phase will be focused on optimizing their implementation
for speed and area.

• The i-SLIP switch will be programmable to support a
variable number of iterations from 1 thru N.

• Each input port will contain one virtual queue per output
port. These virtual queues will share a buffer pool of up
to 32-packets per input.

Changes to i-SLIP
Due to the flow control mechanisms, i-SLIP must be modified
so that it doesn’t connect an input port to an output that does
not have enough credit remaining to accept a data transfer. To
handle this case, outputs with 0 credit will not participate in
the arbitration iteration. If credit arrives between iterations

Crossbar Switch Using I-Slip Scheduling Algorithm for NoC
Abhimanyu Singh

Department of Electronics and Communication Engineering, IEC Group of Institutions, 4, Knowledge Park – I, Surajpur
Kasna Road, Greater Noida 201306 UP India

abhimanyus88@hotmail.com

45

of the same scheduling cycle, the port may become active
again and participate in the remaining arbitration iterations.

Figure 1. Scheduler Block Diagram.

III. PERFORMANCE
• Despite its simplicity, the performance of iSLIP is

surprisingly good. A detailed study of its performance and
implementation can be found. In brief, its main properties
are:

• Property 1. High Throughput — For uniform, and
uncorrelated arrivals, the algorithm enables 100% of the
switch capacity to be used.

• Property 2. Starvation Free — No connection is starved.
Because pointers are not updated after the first iteration,
an output will continue to grant to the highest priority
requesting input until it is successful. Furthermore, i SLIP is
in some sense fair: with one iteration and under heavy load,
all queues with a common output have identical throughput.

• Property 3. Fast — The algorithm is guaranteed to
complete in at most N iterations. However, in practice the
algorithm almost always completes in fewer iterations.
i.e. for a switch with 16 ports, four iterations will suffice.

• Property 4. Simple to implement — An iSLIP scheduler
consists of 2N programmable priority encoders. A scheduler
for a 16-port switch is readily implemented on a single chip.

• The performance of iSLIP can be seen in Figure 2. It shows
that throughput of RRM is increaced from 63% to 100%
in iSLIP.

Figure 2. Performance Graph.

IV. RESULTS AND DISCUSSION
TESTING
• The switch design underwent a large testing effort to verify

functional correctness. The testing involved both unit and
system-level testing using structured and random stimulus
and assertions. The testing occurred in two phases: unit-
level verification and system-level verification.

RESULT
• The split unit-level and system-level testing strategy worked

well for the 8x8 switch verification.

• By starting with the unit-level testing, low-level design bugs
were flushed out without having to deal with the additional
complexities of the other complex design components. Bugs
in the unit-level verification were easy to diagnose and
fix. Unit-level testing uncovered problems in the complex
arbiter wiring of the scheduler, a bit-order problem in the
priority encoders, and several bugs in the input block linked
list update logic. In addition, unit-level testing uncovered
a microarchitectural limitation in the input block when an
incoming packet arrives in the same clock as a scheduler
send request. The microarchitecture was changed to allow
this case.

• Once the unit-level bugs were worked out, the system-level
verification tested the interaction between the three main
design units as well as the wiring of the 8x8 switch. Several
problems were found in the wiring of the input_blocks to the
scheduler and output blocks, and yet more linked-list update

CROSSOVER SWITCH USING I-SLIP

	starting pages
	AKGEC int journal

