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Abstract —This is the third and the last one of three parts of the 
above titled paper. This part will deal with Miller’s theorem, how 
its various versions can be used in analyzing passive and active 
circuits. Next matrix method of analysis is outlined and it is 
shown that matrix method is simpler and faster than the Miller’s 
equivalent circuits. Finally, a generalized Miller’s theorem is 
stated, proved and its applications are given. 
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I. INTRODUCTION
TWO networks are said to be equivalent at a pair of terminals 
if the voltage-current relationships for the two networks are 
identical at these terminals. Replacing a part of a complex 
network by its equivalent circuit helps simplifying the 
analysis. For example, the star-delta transformation can help 
analyzing certain circuits where the series-parallel reduction 
technique alone does not yield the solution [1].

Miller’s theorem [2] and its dual [3] are known for a long time. 
Macnee [4] suggests an alternative presentation to improve 
the understanding of the same and puts in a word of caution 
on the prediction of the reverse transmission and output 
immittance from the equivalent. Later two more versions [5] 
and [6] of Miller’s theorem appeared. Rathore [7] presented a 
generalized Miller theorem and its applications in the analysis 
and synthesis of networks. Ki et al. [8] examine pole splitting 
of a generic single-stage amplifier in detail. They emphasize 
the correct condition for applying Miller’s Theorem, identify 
the actual movement of the poles, derive the input and output 
impedances, and conclude that the application of the Miller 
effect should be used with precaution; otherwise, wrong 
results could be obtained. 

Filipkowski [9] suggests a new approach to the problem of 
loss of information about the poles and zeros in the transfer 
function introduced by the Miller effect approach. Mazhari 
[10] clarifies that not only can a reasonable estimate for 
both dominant and non-dominant poles be obtained through 
Miller’s theorem but additional insight is also offered into pole 
splitting, not afforded by conventional analysis. Moura [11] 
provides a detailed and rigorous analysis of Miller’s theorem 
and its dual. He utilizes the iterative process to estimate the 
closed-loop gain from the open-loop gain due to which the 
value converges to the true closed-loop gain as the number of 
iterations (n) tends to infinity. He defines the errors in voltage 
gain and input admittance after n iterations, highlights them 

as associated with Miller’s approximations. He concludes 
that the theorems can be applied to solve with high accuracy, 
certain types of complex circuits and simultaneously provide 
insights regarding the effects introduced by a feedback loop. 

Nayaka [12] utilizes Miller’s theorem for analysis of high-
frequency voltage amplifier where the approximate value of 

gain is taken as 2/A  instead the mid-band gain value A, to 
obtain more appropriate results. Palumbo et al. [13] extended 
the use of Miller’s theorem and derived generalized Miller 
formulae for weakly nonlinear networks and applied it to 
analyze the harmonic distortion of bipolar transistor in CE 
configuration. 

Miller’s theorems provide a simple, and yet a powerful tool 
in simplifying the circuit analysis by decoupling the input and 
output circuits. The approaches adopted can be classified into 
two groups based on the solution obtained: the approximate 
solution in which an approximate value of the gain is assumed 
[4] [11][12] and, the other where gain is not assumed but 
calculated exactly [7][14]. In the first group, exact solution 
can be approached by the process of iteration [11]. Rathore 
[7] and later Dutta Roy [14] have shown that Miller’s theorem 
and its dual can be used for the exact analysis. In [14], it was 
demonstrated that, even though there are undetermined gain 
parameters in the equivalent Miller impedances, they do 
not act as deterrents and the exact analysis can be carried 
out. However, they were applied only once or successively 
and then with the help of other theorems like Thevenin, the 
networks were simplified to arrive at the final results. Thus 
Miller’s theorem and its dual were not fully exploited to 
obtain the final results. 

Rathore and Shah [15] and Prasad [16] showed that all the four 
Miller’s equivalents can be used not only to one particular 
element but several elements in succession or simultaneously 
to both the passive and active circuits. It is observed that if the 
equivalents are applied in succession, the circuits to be solved 
are more complex than when applied simultaneously to 
different elements. The latter approach requires more number 
of equations to be solved simultaneously than the former one. 
In all the applications of Miller theorems, the most difficult 
task is to calculate exactly a particular transfer function as an 
intermediate step and requires involved algebra. 

There are many ways to prove the equivalence of Miller’s 
networks. Proofs have already been derived in terms of 
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network parameters in [7], however, Rathore and Shah have 
used the substitution theorem [17] to prove them [15].

Matrix method of analysis [18] is given in Section III. It 
gives the exact solution of the circuit without making any 
approximation for any transfer function. The classical loop 
and node methods for passive circuits are the special cases. 
It gives an insight as to how a reciprocal network can be 
converted into a non-reciprocal one using controlled sources. 
No intermediate step for calculating a specific transfer 
function is required and no special precaution is to be taken 
for determining any function including output admittance and 
reverse gain. 

Thus we have seen that there is a class of circuits which have 
controlled sources dependent upon current through or voltage 
across some passive element in the circuit. However, there 
is another class of circuits where elements are dependent 
upon some transfer function (voltage, current, resistance and 
conductance). These are evolved when a series (parallel) 
element of a ladder is replaced by two elements dependent 
upon one of the transfer functions. 

Two 2-port network N1 and N2 can be connected in four 
possible feedback connections, namely, parallel-parallel 
(PP), series-series (SS), parallel-series (PS) and series-
parallel (SP) connections [1]. For each connection, there is 
one particular Miller’s theorem known which when applied 
to N2 (say), reduces it to an equivalent 2-port consisting 
of two 2-terminal emittances, one appearing at each port 
of N1. However, each of these known theorems deals with 
a special N2 network. Rathore deals with four generalized 
Miller’s equivalent circuits[7]; each one is applicable to 
a particular connection of the general two 2-port network 
N2. From these equivalent circuits, a generalized Miller’s 
theorem is stated. Many known results, such as capacitance 
multiplication, high input impedance of the emitter follower 
and the Darlington pair, and synthesis of driving point and 
transfer functions by some network configurations, can be 
understood/explained through the Miller’s theorem. 

II. Miller’s equivalent circuits
A. Miller voltage transfer function equivalent circuit
Consider the circuit shown in Fig. 36(a). Here

                               BA ii −=  	 (78)
Let
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	 (79)

The circuit can be represented as shown in Fig. 36(b) using 
the substitution theorem. The voltage sources vA and vB are 
replaced by equivalent resistances
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keeping the same potentials at points P and Q as shown in Fig. 
36(b). Finally, the two series resistances (R and R1) and (R and 
R2) in Fig. 36(c) are replaced, respectively, by

(81)

Thus, R in Fig. 36(a) can be replaced by two resistances RAand 
RB as shown in Fig. 36(d). 
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Figure numbers and equation numbers are in continuation with the Part 2 of the paper published in volume  9 no. 1, pp.1-12 
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(e)

Figure 36.  (a) Circuit; (b) - (e) Equivalent circuits.

By using the substitution theorem, the resistance RB can be 
replaced by a current source iA = vA/RA as shown in Fig. 36 (e). 
This Miller’s voltage equivalent will be shown to be more 
convenient to use than Fig. 36(d) when applied simultaneously.  
In general, there are N-1C2 possible ways of choosing a resistor 
in a circuit to which the Miller’s voltage equivalent circuit can 
be applied, where N is the number of nodes. 

B. Miller transfer resistance equivalent circuit
In Fig. 37(a), let 

(81)

then the Miller resistance equivalents are shown in Fig. 37(a) 
and (b). The values of the Miller’s current equivalents are
	

(82)

(a)

(b)

Figure 37.  (a)-(b) Equivalent circuits.

C. Miller current gain equivalent circuit
Consider the circuit shown in Fig. 38(a). Here

(83)

(84)

Fig. 38(b) - (d) give the Miller’s current equivalents. The 
voltage sources in Fig. 38(c) are replaced by the resistances R1 = 
RAi and R2 = R/Ai keeping the same potentials at points P and Q. 
Finally, in Fig. 37(d), the two series resistances are replaced by

(85)

Thus, R in Fig. 38(a) can be replaced by two resistances RA 
and RB as shown in Fig. 38(d). While applying Miller’s current 
equivalents there is an increase in the number of nodes by 
one. Note that in this equivalent iB = 0 will be a trivial case.

(a)

(b)

(c)

(d)

Figure 38. (a) Given circuit. (b) - (d) Equivalent circuits.
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D. Miller transfer conductance equivalent circuit
In Fig. 39(a), let 

(86)

then the Miller conductance equivalents are shown in Fig. 
39(a) and (b).

(a)

(b)

Figure 39. (a)-(b) Equivalent circuits.

Thus, R in Fig. 39(a) can be replaced by two resistances RA 
and RB as shown in Fig. 39(b) with the following values

(87)

Here also the number of nodes will increase by one.

The MVE was initially called by the name Miller’s theorem. 
Later all others are also called as various versions of Miller’s 
theorems.

EXAMPLE 1
For the circuit shown in Fig. 40(a) determine the voltage ratio 
Av = v2/v1 using Miller’s theorem.

(a)

(b)

Figure 40. (a) Bridged-T network. (b) Equivalent circuit.

Using Miller’s transfer voltage equivalent to the resistor 3, the 
circuit reduces to that shown in Fig. 40(b) where

Solving the circuit by series-parallel reduction technique 
gives

(88)

Applying Miller resistance equivalent to the resistor 3, the 
circuit reduces to that shown in Fig. 40(b) where RA = 3+ RE, 
RB = -RE and RE = v2/iA. Analysis of the circuit gives

(89)

Or

From the above example, the following observations are 
made. Choosing the resistor whose one end has voltage v2 and 
the other end has voltage v1 leads to the quicker solution if the 
ratio v2/v1 is to be determined. The choice of applying MVE to 
3-Ω resistor is the ideal choice, as it gives directly the desired 
voltage ratio as the end result and not the intermediate one.

EXAMPLE 2
In the circuit shown in Fig. 41(a) determine the current 
through the 5-Ω resistor.
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(b)

Figure 41. (a) Bridged-T network. (b) Equivalent circuit.

Applying Miller’s conductance equivalent circuit to the 4-Ω 
resistor, the resulting circuit is shown in Figure 41(b) where 
GE = iB/v3.

Analysis of the circuit gives

(90)

The current through 5-Ω is zero. This is expected as the given 
circuit is a balanced Wheatstone bridge. 

EXAMPLE 3
Determine the voltage ratio v2/v1 for the network shown in 
Figure 42(a). 

In the previous example we have applied Miller’s theorem 
to one resistor only. However, it can be applied successively 
to other resistors as well. In this problem we shall apply 
Miller’s theorem to more number of resistors simultaneously. 
Applying MVE simultaneously on the three resistors having 
value R the resulting circuit is shown in Figure 42(b).

Let A1 = v2/v1, A2 =v3/v1, A3 = v4/v3 and A4 = v2/v4. Obviously 

(a)

(b)

Figure 42. (a) Bridged ladder network. (b) Equivalent circuit.

A1 = A2A3A4.                            
      (91)

and

(92)

(93)

Substituting for ii, i = 1,2,3,4 and then for vj,j = 2,3,4 from 
eqns. (92) and (93) and simplifying we obtain the following 
equations.

(2 + R/RL)A1 - A2A3 = 1 (94)

3A2 -A2A3 = 1 (95)

 A1 + A2 - 3A2A3 = 0 (96)

Solving these equations gives

EXAMPLE 4

Consider the circuit shown in Fig. 43(a). Applying the MVE 
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(b)

Figure 43. (a) Active circuit (b) Equivalent circuit.

to R3 and MCE at node C to R4 simultaneously, the resulting 
circuit is shown in Fig. 43(b) where Ai= iB/iAand Av= v2/v.
From Fig. 43(b),	

     (97)

From these equations, we obtain

    (98)

   (99)

where
  (100)

Note that b2d1 - b1d2 = 0.
From eqns (98) - (100), we obtain

 (101)

    (102)

where

Applying potential divider rule at the input and output sides, 
respectively, gives

   (103)

where ( ).1' 411 iARRR ++=

  (104)

Voltage gain is easily obtained as
 

 (105)

III. MATRIX METHOD

The following steps are involved in the matrix method of 
node analysis [18].
1.	 The unknown node voltages are identified.
2.	 The controlled variables are expressed in terms of unknown 

node voltages. 
3.	 The dependent and independent voltage sources are 

converted into current sources.
4.	 The matrix equation [Y][V] = [I] is formulated.
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5.	 The right hand [I] matrix consists of independent and 
dependent sources. The controlled variables are replaced 
in terms of unknown node voltages. 

6.	 The right hand matrix is split into two parts: one with 
independent current sources and the other with unknown 
node voltage variables as 

[Y][V] = [IA] + [X][V] 

	 where [X] is a suitable admittance [YA] matrix. The second 
term on the right hand side is brought to the left hand side 
and subtracted element by element from the [Y] matrix to 
obtain 

[YB][V] = [IA] 

7.	 This equation is solved for the unknown node voltages 
using Cramer’s rule.

The following steps are involved in the matrix method of loop 
analysis [18].
1.	 The unknown loop currents are identified.
2.	 The controlled variables are expressed in terms of unknown 

loop currents. 
3.	 The dependent and independent current sources are 

converted into voltage sources.
4.	 The matrix equation [Z][I] = [V] is formulated.
5.	 The right hand [V] matrix consists of independent and 

dependent sources. The controlled variables are replaced 
in terms of unknown loop currents. 

6.	 The right hand matrix is split into two parts: one with 
independent voltage sources and the other with unknown 
current variables as 

 [Z][I] = [VA] + [X][I]

	 where [X] is a suitable impedance [ZA] matrix. The second 
term on the right hand side is brought to the left hand side 
and subtracted element by element from the [Z] matrix to 
obtain 

[ZB][I] = [VA].

7.	 This equation is solved for the unknown loop currents using 
Cramer’s rule.

After sufficient practice some of the steps can be skipped.
The method will now be demonstrated with examples. 

Example 5: Determine V2/VS for the circuit shown in Fig.44 
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=
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1
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Let us use the node method. The controlling variable

(106)

The input voltage source VS is converted into the current 
source IS and shown in Fig. 45.
	
The node equations can be written in a straight forward 
manner as 
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Figure 44. Circuit for example 5.
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Figure 45. Equivalent circuit after voltage source transformation. 
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(108)

(109)

This relation can also be obtained by using Miller’s equivalents 
in succession as in [14] and simultaneously as explained 
above [15] but with a cumbersome lengthy algebra. In the 
present method, the algebra involved is only in solving (108).

Note that if RE = 0, the circuit reduces to that given in Figure 3 
of [14]. Here V3 = 0. Hence, from (107) after deleting 3rd row 
and 3rd column, we obtain

where 

(110)

Solving we obtain

 .
(111)

Alternatively, substituting RE = 0 in (109), we can obtain (111) 
which is the same as given by eqn (12) in [14]. 

Example 6: Determine VO/VS for the circuit shown in Figure 

46 by loop analysis. Loop currents are shown. 

The controlling variable
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Eliminating the controlled current source the circuit reduces 
to that shown in Fig. 47.

The loop equations can be written in a straight forward 
manner as 
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Figure 46. Circuit for example 6.
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Figure 47. Equivalent circuit after source transformation.

From Figure 47
.

Substituting for I1 and I2 from (113) and (114) and simplifying 
we obtain

(115)

Note that if R → ∞ 

(116)

which tallies with the result of example 3 in [14]. 

Example 7: Determine output admittance Yout and reverse 
voltage gain Ar for the circuit shown in Fig.48 where 
z-parameters for the sub-network N1 are z11, z12, z21, z22.

	
						    

Figure 48. Circuit for example 7.
	

Here we have 

(117)

Output impedance seen by LR

(118)

This is also obtainable (by a method other than the matrix 
approach) from the relation given on p 665 of [19]. Now

(119)

Thus, including RL

(120)

Reverse voltage gain

(121)

Now consider the network N1 as shown in Figure 49 [4]. By 
the proposed matrix method, or directly from eqn (120) after 
substituting 	
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Figure 49. Network N1.

	

Substituting for y’s, (120) and (121) yield, respectively,

(122)

and

(123)

Note that eqn (122) is the same as eqn (6) in [4] which is 
obtained by direct analysis and not by Miller equivalent 
circuit approach.

Comparison with the method using superposition theorem 
and matrix method.
There is a similarity between the methods based on 
superposition theorem [20] and Miller’s equivalents. The 
former method is applicable to the circuits in which sources 
are dependent on some voltage or current; while the latter is 
applicable to the circuits in which the elements are dependent 
on some transfer function. However, in both the methods, one 
has to determine the controlling variables first and then any 
other desired voltage or current. We have seen above that the 
matrix method [18] is more efficient than the method using 
Miller’s equivalents [15]. 

IV. Generalized Miller Theorem
Table 1 gives the Miller equivalent circuits for the four 
connections of two 2-port networks N1 and N2 mentioned 
earlier. For each connection, N1 is assumed to have a specific 
forward transfer function A as given in Table 2.

TABLE 2
Connection A

PP Voltage gain AV=V2/V1 (124a)
SS Current gain AI=I2/I1 (124b)
PS Transfer admittance AY=I2/V1 (124c)
SP Transfer impedance AZ=V2/I1 (124d)

The following general procedure has been adopted in arriving 
at these Miller circuits.

TABLE 1
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Step 1: N2 is replaced by its appropriate two-generator 
equivalent circuit [1] depending upon its interconnection with 
N1as given in Table 3.

Step 2: Each generator is then expressed in terms of the 
specific forward transfer function of N1 as shown in Table 4.

TABLE 3
Connection Equivalent circuit in terms of

PP y parameters

SS z parameters

PS g parameters

SP h parameters

Step 3: These generators are replaced by equivalent emittances 
using the substitution theorem [17]. The resulting circuits are 
shown in the last column of Table 1.

TABLE 4
Connection

PP y12V2 = (y12Av)V1 
y21V1 = (y21/AV)V2

SS z12I2 =  (z12A1)I1
z21I1 = (z21/A1)I2

PS g12I2 = g12/(AY)V1
g21V1 = g21/(AY)I1

SP h12V2 = (h12(AZ)I1
h21I1   = (h21/(AZ)V2

Step 4: Two series (parallel) impedances (admittances) 
are finally replaced by a single equivalent impedances 
(admittance). We shall call it Miller’s emittance. Thus
	

Miller 
emittance =

From the above theory, we make the following observations.
1.		 The approach followed here is general and different from 

that in [3][5][20].
2.		 Expressions for Miller emittances are simple and easy to 

remember. Because of the similarity in their expressions, 
a general Miller theorem can be stated as follows.

	 If two 2-port networks N1 and N2 are interconnected, Then 
N2 can be replaced by two-terminal emittances X1 and X2 
at ports 1 and 2, respectively, given

(128)

where forward gain A of N1 and x are defined Table V.

TABLE 5
Connection A x Xi

PP AV y Parallel elements  Y1,  Y2

SS AI z Series elements     Z1,  Z2

PS AY g Parallel element    G1
Series element      G2

SP AZ h Series element      H1
Parallel element    H2

4.	 PP and SS, PS and SP connections are dual pairs and so 
also are their equivalent circuits. The Miller equivalents 
corresponding to the former pair represent the generalized 
forms of those in [3]. The results of [5] follow after 
substituting in (127) and (128) the g and h parameters of 
the specific networks N2 used, i.e.,

(129)

and

        (130)

	 Thus, Miller equivalents of PS and SP connections in Table 
1 represent the generalized forms of those in [5].

6.	 Effect of N2  is to modify the driving point immittances of 
N1. Thus, the Miller’s theorem can be/has been beneficially 
used in two ways:

i) 	 Analysis—Complexity introduced by N2 network can 
be reduced by replacing it with equivalent Miller’s 
immittances.

ii) 	Synthesis—Driving point impedance of N1 can be modified 
by connecting suitable N2 network to realize a desired 
impedance.

In the next section some applications of the Miller’s theorem 
are given to demonstrate its power as an analytical tool in the 
analysis and synthesis of networks.

V. APPLICATIONS         
A. PP Connection 
This is the well-known connection which is often simplified 
by the Miller’s theorem. However, it may be pointed out that 
the analysis becomes simplified only if AV is either known 
or can be determined independently. Examples where AV 
is known can be seen in [21]. When AV is not known; the 

1,2   ;2,1      , ==+= jIAxxX iiiii

MILLER’S THEOREM



18

AKGEC INTERNATIONAL JOURNAL OF TECHNOLOGY,  Vol. 10, No. 1

analysis is carried out by assuming approximate value for 
AV. For example, in high frequency analysis of common 
AV emitter amplifier, a mid-band value of AV is used as can 
easily be obtained by inspection [22, p. 468]. Similarly, while 
analysing the emitter follower [22, p. 474] and Darlington 
pair circuits, AV is assumed to be 1. We analyse here a circuit 
for which AV is neither known nor assumed. Consider the 
FET amplifier circuit of Fig. 49(a). Its ac equivalent and the 
simplified circuit after replacing N2 by Miller impedances are 
shown in Fig. 50(b) and (c), respectively, where AV = V2/V1. 
From Fig. 59(c), one can easily find that

Solving for AV

Input resistance .
1

3

V
i A

Rr
−

=

The Miller theorem by Miller’s theorem has not been explicitly 
used in synthesis of networks. We demonstrate here some 
applications in this area. First we take the synthesis of driving 
point functions. Consider the configuration shown in Fig. 51. 
After applying the Miller theorem, we find that the input 
impedance

(131)

  (a)                                              (b) 

(c)
Figure 50. (a) FET amplifier, (b) ac equivalent circuit,  

(c) simplified circuit.

.
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Figure 51. General configuration for realizing driving point 
functions.

Thus, to synthesize Zin by this configuration, one has to 
determine suitable Z and AV. From eqn (131)

Split Zin such that Zin = ZaZRC where ZRC is RC realizable  
impedance. Let Z = ZRC. Then

Now AV can be realized as follows. Realize T = Za as a 
voltage transfer function by suitable active-RC network. 
Then carry out τ OI and τ IE operations [23] in sequence or 
a τ OEI operation in one shot on T to realize AV. In the former 
case, if T = Za realization happens to be a chain of n cascaded 
networks having voltage transfer function T1, T2, .  . .  . , Tn, a 
number of AV realizations are possible. This is due to the fact 
that the reciprocal of T can be expressed as a product of the 
reciprocals of the voltage
impedance. Let Z = ZRC. Then

transfer functions of a chain of subgroups of the entire circuit. 
For instance, 









=

nTTTTT .....
11

321
....1...

4

1
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1
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Following the above procedure, realization of an NIC, a 
C-multiplier, an ideal inductor, and an FDNR (frequency-
dependent negative resistor) are given in Fig. 51(a). 
Realization steps are summarized in Table 6.

Table 6
NIC C-Multiplier Inductor FDNR

Zin -ZRC
1/KsC,
K > 1 s s2

Z ZRC 1/sC 1 1

T=Zo 1 1/K s s2

AV 2 -(K-1) 1-1/s 1-1/s2

.1
in

V Z
ZA −=

.111
TaZ

Z
VA −=−=

.111
TZ

ZA
a

V −=−=
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(i)

(ii)
(b)

Figure 52. (a) Realization of (i) NIC, (ii) C multiplier,  
(iii) ideal inductor, (iv) FDNR, (b) Additional realizations of  

(i) inductor, (ii) FDNR.

In the case of an inductor, two more realizations can be obtained 
by interchanging the order of inverter and differentiator in T 
realization in Fig. 52.

Now we consider the synthesis of transfer functions. Since 
the open-circuit voltage transfer function of the RC network 
NA in Fig. 53 is T = -y21A/y22A, the poles of T are restricted 
to the negative real axis only. However, if y22 is modified by 
adding another term, it may be possible to change the pole 
positions. This extra admittance term is provided by the 
Miller admittance reflected by the network connected to NA as 
shown in Fig. 53. Poles may be shifted to the desired position 
by choosing the NB network and AV. Kuh [25, p. 311] and 
the other structure [25, p. 311] are the special cases of the 
configuration of Fig. 53.

Now consider the circuit shown in Fig. 54. The short-circuit 
current transfer of the RC network NA is -y21A/y11A. Thus, the 
poles are restricted to the negative real axis. However, the 
Miller Admittance Y1, reflected by the remaining portion 
of the circuit in Fig. 54, changes y11 and thus modifies the 
pole locations of the overall current transfer function. For 
simplicity of the synthesis,  NB in both Fig. 53 and 54 may 
be taken as a simple series admittance Y. The exact synthesis 
procedure can be seen in [24, p. 322]. Similarly, many other 
configurations, such as those given in [24, ch. 8], can also be

Figure 53. Active RC realization of voltage transfer function.

In the inductor realization, we realized T = s by an inverting 
differentiator preceded by an inverter. In the case of FDNR, 
T = s2   has been realized by a cascade connection of two non-
inverting differentiators. In both cases, AV has been obtained 
by a TOEI operation [23]. Other alternative realizations 
involving τ OI and τ IE operations are shown in Fig. 52(b).

(i)

(ii)

(iii)

(iv)
(a)

MILLER’S THEOREM
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Figure 54. Active RC realization of current transfer function.

analysed through the Miller’s theorem to see how poles and /
or zeroes relocated.

(a)

(b)

Figure 55. (a) Equivalent circuit of common emitter amplifier,  
(b) Reduced circuit.

B. SS Connection
Consider the ac equivalent circuit of a common emitter 
amplifier shown in Fig. 55(a); the reduced circuit after 
application of the Miller’s theorem is shown in Fig. 55(b).

Thus, the Miller theorem explains the reflection of (1 + hfe) 
times larger input resistance of what is connected in the emitter 
leg. In a similar manner, one can easily verify that in common 
base amplifier, any resistance RB connected in the base leg is 
reflected as RB/(1 + hfe) in the input circuit.

C. PS Connection
We have taken the circuit shown in Fig. 56(a) from [5]. After 
applying the Miller’s theorem, it reduces to that shown in Fig. 
56(b). Simple analysis leads to the result the same as obtained 
in [14]. 

(136)

(a)

(b)

Figure 56. (a) PS connection, (b) Reduced circuit.

D. SP Connection
An example of this type of connection is shown in Fig. 57(a) 
and (b) after applying the Miller’s theorem. By inspection,

(137)

If Za→∞, it reduces to more familiar result V0/VS = -Zf/Zb of 
an inverting OA amplifier.

From the above applications, we see that the Miller’s theorem 
drastically simplifies the analysis if a specific transfer function 
A of N1 is known However, in the analysis of feedback 
amplifiers, the specific transfer function A is usually not 
known. In such cases, the two generator equivalent circuits of 
Table 1 are quite useful [21],  [25]
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(b)
Figure 57. (a) SP connection, (b) Reduced circuit.

The left-hand generator represents the feedback signal and 
the right handed generator represents the feedforward signal. 
Thus, the feedback factor β is y12, z12, g12 or h12 depending 
upon the connection.

VI. CONCLUSION
Four general Miller equivalent circuits, one for each of the 
four possible connection of two two-port networks, have been 
derived. The earlier known versions [3], [14] are the special 
cases of these circuits. Moreover, the method followed here 
for deriving them is different from ones. A generalized Miller 
theorem has been stated. Typical applications are included to 
demonstrate the analytical power of the Miller theorem in the 
analysis and synthesis of networks.
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