
Abstract -  This is the second part of three parts of the above titled 
paper. This part will deal with maximum power transfer theorem, 
maximum power delivery theorem and true superposition 
theorem. 

Keywords: Superposition theorem, maximum power transfer theorem, 
maximum power delivery theorem, True superposition theorem. 

I. INTRODUCTION
THE MAXIMUM power transfer theorem has received 
some attention by several authors [l] - [9]. References  
[1] - [3] deal with the maximum power transfer in multi-port 
networks. Hence, their description will be out of place as we 
will address the power transfer from a dc 2-terminal network n 
to another 2-terminal network N. Most of the books deal with 
the maximum power transferred to a variable load resistance. 
Very few books, for example [10] considered the maximum 
power delivered to a fixed load resistance. Here, all the 3 
possible cases of power transfer to a resistive load [6] are 
considered in Section II. 

However, all these are restricted to a resistance only that 
absorbs the power. Narayanan [7] has given a generalized form 
of maximum power transfer in which the element absorbing 
power need not be just a resistor. The theorem can be stated as: 
the maximum power is transferred from a 2-terminal network 
n to another 2-terminal network N when voltage across N 
equals half the open circuit voltage of  n or current through 
N becomes half of the short circuit current of n. Narayanan 
Proof of the theorem [7] and an alternative proof [9] are given 
in Section III.

Leach [11] found that 20 introductory books on circuit 
analysis [12-31] either state or imply that principle of 
superposition  (POS) on dependent sources is not allowed, 
which, he contended, is a misconception. He finally concluded 
that POS can be applied to such networks also, through a 
formal proof followed by several examples. In this paper, 
we give a general condition on the circuits to which POS 
cannot be applied. 

A simple, but convincing proof [32] is provided in Section IV. 
The results are verified by the matrix method [33]. Finally, 
it is shown that the matrix method is more efficient [33-34]. 

II. MAXIMUM POWER TRANSFER THEOREM
It is desired to maximize the power in a load resistance RL when 
only one resistance is variable. One of the steps in evaluating 
the power transferred to RL is to find the Thevenin Equivalent 
across RL. This is shown in Figure 16 where RT and VT are 
the Thevenin Resistance and Thevenin Voltage, respectively. 

The power delivered to RL is given by 

 (37)

The power will be maximum/minimum with respect to a 
variable ,x when

 (38)

i.e., when
      (39)

Cases of power transfer: 
Since there are three variables, RL, RT and VT, the following 
are the possible combinations.
 A) RL alone is variable 

 B) TR  alone is variable 
 C) VT  alone is variable 

 D) RL and TR  both are variable

 E) VT and TR  both are variable
 F) VT and RL both are variable

 G) VT, TR and RL are variables

Figure 16: Reduced circuit using Thevenin theorem.
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Since one and only one resistance is allowed to vary, and VT 
and TR  do not depend upon RL, cases D, E, F and G are not 
possible. If VT is a variable as a function of some resistance, 
then TR  being the ratio of open circuit voltage (VT) and short 
circuit current also varies with R. Thus case C does not exist. 
The remaining three cases will be considered now.

Case (i): LR alone is variable
The power will be maximum/minimum, using eqn. (39), when

 (40)

i.e., when

This leads to the condition

This result is explicitly covered in the maximum power 

transfer theorem which states that the power transfered in LR  

is maximum when LR equals RT. 
 
Case (ii): When RT alone is variable
The power P will be maximum/minimum when, from eqn. 
(39), 

i.e., when RT = -RL. Note from eqn. (37) that P decreases as 
RT increases. Hence if R is to be a non-negative resistor then 
RT = 0 will give the maximum power. Thus the conditions for 
maximum power in cases (i) and (ii) are different.

Example 1: Consider the circuit shown in Figure 17(a). This 
comes under Case 1.

The above procedure indicates that the power transferred to 
the combination of load resistance RL and Ro will be maximum 
when their parallel equivalent resistance equals R. But this 
condition will not necessarily give the maximum power in 
RL.  Drawing the Thevenin equivalent circuit as shown in Fig. 
17(b), and applying the above theory, we see that the power 
is maximum when RL = RRo/(R+Ro).

 
(a)                                   (b)

Figure 17. (a) Circuit for Example 1, (b) Reduced circuit.

Example 2: Consider the circuit shown in Figure 18.

This belongs to Case (ii). Here the power delivered in LR
will be maximum when equivalent resistance of the parallel 
combination of R and Roequals 0, i.e., when R  = 0.

Figure 18. Circuit for Example 2.

Case (iii): When both RT and VT are variable
In Figure 16 if both VT and RT are the functions of some 
resistance R, then the condition for maximum/ minimum 
power, from eqn. (40), is 

(41)

This will give the value of R for maximum/minimum power 
transfer to RL. Note that eqn. (41) is valid when both VT and 
RT are expressed as polynomials in R.

Example 3: Consider the circuit shown in Fig.19. First we 
determine its Thevenin equivalent. The open circuit voltage 
VT and short circuit current IS  are determined using loop 
analysis as follows. Applying KVL to the circuit of Fig.20 
when terminals XY are open, we get

By Cramer rule,
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(42)

and

(43)

Thus 

(44)

Figure 19. Circuit for the Example 3.

Again applying KVL to the circuit of Fig.19 when terminals 
XY are shorted, and IS is the clockwise loop current in loop 
DBCY, we get

By Cramer Rule,

Now 

(45)

Note from eqns. (44) and (45) that both VT and RT are the 
functions of R. 

Now P is given by

(46)

where

  
both    are the polynomials in R. The condition for maximum/
minimum power, from eqn. (39), is 

This does not yield a solution for R. It implies that P is a 
monotonic function. From eqn. (46), we see that P increases 
as R increases. Hence it will be minimum when R = 0 and 
maximum when R = ∞. Thus the maximum value is 

Example 4: Consider the circuit shown in Figure 20(a). It 
has one controlled source. We shall first find the Thevenin 
equivalent for the circuit. Then the condition for maximum 
power transferred can be obtained from eqns. (40) or (41). 
We shall find out the Thevenin equivalent by two alternative 
methods: Applying an external voltage source and finding 
the current supplied by this source by loop method, and by 
applying an external current source and again solving by the 
loop method.

External voltage source and loop analysis
Let a voltage source be connected across terminals XY as 
shown in Figure 21(b). Loop currents are also shown in the 
figure. Note that 

(47)
After converting both the current sources into voltage sources, 
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the circuit becomes as shown in Figure 20(c). KVL gives

Substituting for Ix from (47),

(a)

(b)

(c)

(d)

Figure 20.(a) Circuit for example 4.
          (b)  A voltage source is applied across XY
          (c)  Current sources converted into voltage sources
          (d)  Thevenin Equivalent.

By Cramer rule, 

(48)

Figure 20(d) gives the circuit after replacing the circuit to the 
left of XY by its Thevenin equivalent. Now 

(49)

Comparing eqns (48) and (49) we get

(50)

Now P is given by 

(51)

where     both are the polynomials 
in R. The condition for maximum/minimum power, from  
eqn. (39), is 

This does not yield any finite value for R. This implies that 
P is a monotonic function. From eqn. (51), we see that P 
increases as R increases. Hence it will be minimum when R 
= 0 and maximum when R = ∞. Thus the maximum power is

  = 36 when RL = 1.

VT and RT  are given by eqn.(50).
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(56)

This will be maximum/minimum when, from eqn.(39),

(57)

It can be seen that this does not yield the value of R. Thus 
P is a monotonic function. Its value at R = 0 and R = ∞ are 
respectively

(58)

Thus P will increase from P(0) to P(∞) if P(0) <P(∞), i.e., 
when 

 
   ,

i.e., when 

(59)

From eqns.(58) and (59), we observe that 

(60)

B. External current source and loop analysis
External current source is applied across XY as shown in 
Figure 21(a). Converting the current sources into voltage 
sources, we get the circuit shown in Fig. 21(b).

By KVL

Now
(52)

However, from eqn. (3), (here current I is negative)

(53)

Comparing this with eqn. (49), we get the same values of the 
VT and RT  given by eqn.(50). 

We shall take a general case of Examples 3 and 4. From eqn.
(53),

(54)

In general .  I = aV + b Thus, comparing we get 

a.  bTVaTR /,/1 −=−=

It is obvious that both TR and TV have  the same denominator 
a. Thus we may express

(55)

where u, v, w, x, y and z are constants.

Now

(a)

(b)
Figure 21 (a) Current source applied

(b) Current sources converted into voltage sources.

MAXIMUM POWER DELIVERY AND SUPERPOSITION THEOREMS
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From eqn.(60), we note that
1. The maximum/minimum power occurs when either R = 

0 or R = ∞, i.e., when either R is short circuited or open 
circuited.  

2. For positive values of ,LR 0)( >RP  and vice versa.
3. When u = v, w = x, y = z, P(0) = P(∞). In this case both VT 

and RT become independent of R. It is also possible that 
P(0) may be equal to P(∞) for some value of RL. In both 
the cases, the power will be constant (independent of R). 
Readers may find some interesting application of this 
property.

The above results are summarized in the form of the following 
theorem.

Theorem: In Figure 1, if Thevenin components 

                      
then the power in 

RL increases with increase in R for LR >0 and for

 otherwise decreases, 

and remains constant when

In example 3, we have  u = v = 10, w =1, x = y = 2, z = 3. 

From eqn. (58)  P(0) =   and 

 

P(∞) =  

P(0) has zeros at RL = 0 and ∞, two 

poles at RL = –3/2 and peak at RL = 1.5; while P(∞) has zeros 
at RL = 0 and ∞, poles at RL = –2 and peak at RL = 2. From 
these values, the plots of both P(0) and P(∞) versus RL are 
drawn in Fig.22.
 
It can be seen that the maximum power (infinite) is delivered 
by RL = –1.5 when R is shorted or by RL = -2 when R is opened. 
However, the maximum power 12.5 is delivered to RL when 
its value is 2 and R is opened. 

Figure 22. Variation of P(0) and P(∞) versus RL for the circuit of 
Example 3.

Figure 23. Variation of P(0) and P(∞) versus RL for the circuit of 
Example 4.

Since P(0) and P(∞) curves intersect, other than at the trivial 
cases RL = 0, ∞, at RL = –1, –5/3 giving P(0) = P(∞). Hence, 
this circuit delivers constant power –100 for RL = –1 and -1500 
for RL = –5/3.

In Example 4, u = –18, v = 0, w= 1, x =-8, y = –4, z = –32. 

From eqn (58) P(0) = 0 and P(∞) = 

P(0) has zeros at RL= 0 and ∞; while P (∞) has zeros at RL= 0 
and ∞, two poles at RL = 4 and a peak at RL = –4. From these 
values, the plots of both P(0) and P(∞) versus RL are drawn 
in Fig. 10. It can be seen that the maximum power (infinite) 
is delivered to RL when its value is 4. Since P(0) and P(∞) 
curves do not intersect, except at the trivial cases RL= 0, ∞, 
P(0) ≠ P(∞) for RL ≠  0, ∞. Hence, this circuit does not deliver 
constant power for any value of RL. 

III. GENERALIZED MAXIMUM POWER DELIVERY 
THEOREM

Consider the circuit shown in Fig. 24 where 2-terminal network 
n is delivering the power to 2-terminal network N. Network 
n is shown by its Thevenin equivalent where vT is Thevenin 
voltage equal to open circuit voltage voc and RT is the Thevenin 
resistance = open circuit voltage voc/short circuit current isc. 
KVL gives

(61)

Plot of eqn. (61) is shown in Fig. 26. Note that it has a negative 
slope being power delivery. The interconnection of networks n 
and N is across terminals AB. Hence both will have the same 
voltage v and current i. The v-i characteristics of N will have 
positive slope to receive power. It is therefore necessary that 
v-i characteristic 2 of N should intersect at a point p as shown 
in Fig. 26. The power delivered by n to N is given by

  P = vi.         (62)

ocTTT viRviRv +−=+−=
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After substituting for v from eqn. (61), the condition for 
maximum p, mentioned in the theorem, is obtained in the usual 
manner using differentiation etc.

An alternative proof [9] is given below.

Figure 24. Circuit with network n replaced by Thevenin Equivalent 
and 2-termnal network N connected.

Figure 25. v-i characteristics of n (1) and N (2).

Alternative Proof of the Generalized Maximum Power 
Transfer Theorem 
In Fig. 25 N, as per substitution theorem, is replaced by a 
voltage source of value v as shown in Fig. 26. Now current i 
can be expressed as 

(63)

Substituting for RT = voc/isc and vT = voc

Figure 26. Circuit of Fig 24 with 2-termnal network N replaced by a 
voltage source v.

(64)

Now power absorbed by the N is 

Power p will be maximum when

(65)

Now from eqn. (64)  

(66)

Results of eqns. (65) and (66) can be stated in the following 
generalized maximum power transfer theorem.

Generalized maximum power transfer theorem: The 
maximum power will be transferred from a 2-terminal network 
n to another 2-terminal network N when voltage across 
(current through) N equals half of open circuit voltage (half 
of short circuit current) of network n. 

The above theorem can also be proved by connecting a current 
source i instead of v.

The essential difference in the present derivation and that 
due to Narayanan is that instead of keeping the network N 
intact, we replace it by either a voltage source v (or a current 
source i) for finding power p which is more convincing. Note 
that the theorem gives the values of voltage and current for 
maximum power which are solely decided by network n. The 
actual device which will absorb the maximum power will be 
decided by the v-i characteristic of the network N.

Example 5: Find the conditions when the 2-terminal network 
N shown in Fig. 27 receives the maximum power under the 
following cases:  N is (a) a current source, (b) a voltage source 
(c) resistance (d) a series resistance R and a voltage source 
of  7.5 V (e) a nonlinear device which has v-i relation v = ki2. 

Here voc = 30 V and isc = 30/2 = 15 A. For maximum power to 
be delivered to N, voltage across it should voc/2 = 30/2 =15 V 
or current should be isc/2 = 15/2 = 7.5 A.

Figure 27. Given circuit.

Current source: Current through N for maximum power should 
be isc/2 = 7.5 A.

MAXIMUM POWER DELIVERY AND SUPERPOSITION THEOREMS
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a Voltage source: Voltage across the voltage-source for 
maximum power should be voc/2 = 15 V.

b Resistance: When a resistance is connected, the voltage 
across this for maximum power to be delivered should be 
voc/2 = 15 V and current through it should be isc/2 = 7.5 A. 
Thus the resistance should be 15/7.5 = 2  which is the same 
given by the traditional maximum power transfer theorem.

c Series combination of voltage and resistance: For maximum 
power, the voltage across the combination should be voc/2 = 
15 V and current through it should be isc/2 = 7.5 A.  Voltage 
across the resistance is 15 – 7.5 = 7.5 V. Therefore the 
resistance should be, by Ohm’s law, 7.5/7.5 = 1  Note that 
the value of R equal to 1   gives the maximum power in the 
complete series combination of R and the 7.5–V voltage 
source and not in the R alone. For maximum  power in R 
alone, its value should be 

  (voc/2)/(isc/2) = [(30 – 7.5)/2]/[(30–7.5)/4] = 2 .

      voc/2 = k(isc/2)2→15 = k(7.5)2 →k = 4/15.

IV. SUPERPOSITION THEOREM 
Analysis of circuits with controlled sources using Principle of 
Supposition POS : We prove that POS can be applied in ‘true 
sense’ in solving the circuits with controlled sources. Here ‘true 
sense’ means that the response due to all the independent and 
dependent sources is obtained by superimposing the responses 
obtained, considering one source at a time. For convenience, 
without any loss of generality, we take the typical two-node 
network shown in Fig. 28, with current sources only as it is 
explained in that voltage sources, if present, can be converted 
into current sources. Using node analysis, one can write

(67)

Note that∑ xI and ∑ yI may or may not contain the 
independent and/or dependent sources depending upon the 
position of the current sources in the circuit. In the circuit 
shown, node X has the independent current source I only 
while node Y has both the independent current source I and 
dependent current source kVx. Eqn. (67) can be rewritten as

Figure 28. Typical 2-node network.

(68)

where Ri is the response due to the independent source I and 
Rd is that due to the dependent source kVx. It is obvious from 
eqn (68) that the node voltages can be solved by the POS. 
For example 

(69)

where Δ = y11y22 - y12
2.

Here dependent source kVx should be treated as an independent 
source of value kVx where Vx is the full and final value, i.e., 
when all the sources (independent and dependent) are present. 
Hence, it can be deactivated without reducing the controlling 
variable Vx to zero while determining the response due to 
the independent source I, like we do not put any current 
through, or voltage across, any element 0 while deactivating 
an independent source.

Solving for Vx from eqn. (69), one gets 

(70)

Similarly, from eqn. (68), by Cramer’s rule, one gets

Substituting for Vx from (70), and simplifying 

(71)

Now we solve the circuit by the matrix method of [23]. 
Equation (68) can be expressed as 

which yields
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On solving one gets

(72)

and 
(73)

Equations (72) and (73) are the same as eqns (70) and (71), 
respectively. Thus, we conclude that POS can be applied to 
linear circuits with controlled sources also. 

In [11], it is mentioned that POS cannot be applied to networks 
when all the sources but one are deactivated and the resulting 
circuit contains a node at which the voltage is indeterminate or 
a branch in which the current is indeterminate. In such cases 
POS cannot be used even if all sources are independent. We 
state this condition in a more general form. POS cannot be 
applied to circuits with or without independent sources when 
all the sources but one are deactivated, the activated source 
should not become open if it is a current source or short if it is 
a voltage source. Two examples of such circuits are shown in 
Figs. 29(a) and (b) where the current source is opened and the 
voltage source is shorted, respectively. The circuit in Fig. 1 is 
solvable when one of the current sources, say I3 is a dependent 
source such that I3 = I1 + I2 (requirement of KCL). If we further 
make that I3 = gV , the circuit becomes unsolvable because two 
constraints on I3 cannot simultaneously be satisfied. Similarly, 
the circuit shown in Fig. 29(b) is solvable when one of the 
voltage sources, say VCA, is a dependent source such that VCA 
= -(VAB + VBC) (requirement of KVL), but becomes unsolvable 
whenVCA is also dependent on some other voltage or current 
in the circuit.

(a)                                              (b)

Figure 29. Circuits not solvable by POS.

Example 6: Determine the output voltage Vo in the circuit 
shown in Fig. 30. 

Figure 30. Circuit for Example 1.

Applying POS

Vo = V1 (due to the source Vs alone) + V2 (due to thesource AVs 
alone) = AVs +0=AVs.

Example 7:  Find the current through G2 in Fig. 28 when G1 = 
0.8 S, G2 = 0.2 S, G3 = 0.3 S, k = 0.8 S, I = 23 A. Applying POS

where

Substituting the values, one gets 

By POS for Vy

Note that it is easier to solve for the controlling variable Vx by 
POS first and then any other voltage or current, if required, 
by any other method including using POS. 

Example 8: Determine current I in the circuit shown in Fig. 31. 

Figure 31. Circuit for Example 8.
By POS, 

Example 9: Consider the circuit shown in Fig. 32. 
This circuit cannot be solved by series-parallel reduction, 
current and voltage division and Ohm’s law. We solve it by 
matrix method [33].

By POS and using node analysis, one gets

MAXIMUM POWER DELIVERY AND SUPERPOSITION THEOREMS
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This is the correct answer verified by other method. 

If a network does not have a single independent source, but 
has dependent sources only, then from eqn. (68), we see that 
Ri= 0 and consequently, Rd will also be zero. It means that, in 
the absence of any independent source, the circuit is dead, i.e., 
no current through, and voltage across, any element exist, even 
though the dependent source(s) may be present. 

Figure 32. Circuit for Example 4.
 
While determining Thevenin equivalent of a circuit without 
any independent source but with dependent source, both the 
open circuit voltage and the short circuit current will be zero 
as explained above. In such a case, Thevenin resistance would 
be indeterminate using the relation Rth = Voc/Isc =0/0. However, 
if we connect an independent voltage (current) source of value 
V (I) at the output terminalsand find the current I flowing into 
the voltage source (voltage drop V developed across the current 
source), then Rth = V/I. 

Example 10: Find the Thevenin equivalent of the circuit across 
the terminals AB shown in Fig. 33(a).

We connect a voltage source at the terminals AB. By POS

(a)                                    (b)

Figure 33. (a) Circuit for Example 10, (b) Circuit with external 
voltage source connected.

Example 11: Determine the node voltages Va and Vb in the 
circuit shown in Fig. 34(a). There are two dependent sources; 
one is controlled by a voltage Vo and the other by current Io 
which require the evaluation of corresponding difference of 
two node voltages. Such controlling variables almost double 
the complexity of the solution by POS. 

We apply the node analysis. By POS, one gets

(a)

(b)
Figure 34. (a) Circuit for Example 6 and (b) reduced circuit

(74)

(75)

(76)



11

(77)

From eqns.  (76) and (77), by Cramer’s rule

Substituting the values of Vo and Ioin eqns. (76) and (77) one 
gets

Va=10V, Vb = 2V.

Now let us solve the same problem by Matrix method [33]. 
Node analysis gives 

By Cramer’s rule

These are the same as obtained above, but with considerably 
less effort in solving.

Comparison with Other Methods
There is a similarity between the methods based on POS and 
Miller equivalents [34]. In the former method, the sources 
are dependent while in the latter method, the elements are 
dependent on some parameter. However, in both the methods, 

one has to determine the controlling variables first and then 
any other desired voltage or current. As proved in [34], matrix 
method is more efficient than the Miller equivalent approach. 
It is also more efficient than the method based on POS. This 
is proved below. 

Let there be N number of unknown nodes and Si andSd be the 
number of independent and dependent sources, respectively,  
in a circuit. We shall compare the number of determinants 
to be solved by the POS method and the matrix method for 
determining the voltages of N nodes. In POS method, N 
equations for N node voltages in terms of controlling variables 
are to be written invoking POS. These relations require N(Si+ 
Sd) + 1 determinants of the order NN × to be solved. After 
this Sd relations among the controlling variables will be 
determined. Then evaluation of the controlling variables from 
these relations requires Sd +1 determinants of order Sd×Sd to 
be solved. After this the voltages of N unknown nodes are 
evaluated. Thus in the above example, since N = 2, Si = 1 and 
Sd = 2, it requires 10 determinants of order 2×2 to be solved.

Matrix method requires only N + 1 determinants of order 
NN ×  to be solved. Thus, it requires only 3 determinants as 

against 10 by POS for the circuit of example 6. There is no 
need to determine the controlling variables explicitly. Thus the 
matrix method is more efficient, easier and straight forward. 

V. CONCLUSION
Three possible cases of maximum power transferred to a load 
in a circuit where only one resistance is variable, have been 
brought out. Only in of the cases when the load resistance 
is variable the maximum power transfer theorem can be 
applied. In other two cases, when the load resistance RL is 
fixed, power has to be calculated from the first principle. 
Conditions for maximum power transfer have been derived 
for these cases. A case when both the Thevenin Voltage and 
Thevenin Resistance are variable has been studied in detail. 
The maximum/minimum power is obtained when either R = 
0 (short circuit) or ∞ (open circuit). When RL is positive it 
absorbs the power; while negative it delivers the power to the 
circuit.  Either power can be infinite, constant irrespective of 
the variable resistance, and finite for specific values of RL. This 
result has been stated in the form of a theorem. Theory has 
been explained with the help of typical examples. 

A generalized maximum power theorem has been stated and 
proved by two different methods.  

In the text books, while solving the circuits with controlled 
source using POS, controlled sources are not deactivated. 
Thus POS has not been applied in ‘true sense’ to circuits 
with dependent sources. It has been shown here that POS can 
be applied in the ‘true sense’ to such circuits also, but with 

MAXIMUM POWER DELIVERY AND SUPERPOSITION THEOREMS
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the following caution: (i) All the dependent sources should 
also be treated as independent sources with their full value 
(contribution from all the sources). (ii) When the dependent 
source is deactivated, its controlling variable should not be 
zeroed. POS is applicable to all those circuits with dependent 
sources as well if it is applicable to these circuits when all the 
dependent sources are treated as independent sources. 
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